Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)
- Volume: 3, Issue: 3, page 377-404
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBeirão Da Veiga, H.. "Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (1976): 377-404. <http://eudml.org/doc/83725>.
@article{BeirãoDaVeiga1976,
author = {Beirão Da Veiga, H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {377-404},
publisher = {Scuola normale superiore},
title = {Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions},
url = {http://eudml.org/doc/83725},
volume = {3},
year = {1976},
}
TY - JOUR
AU - Beirão Da Veiga, H.
TI - Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 3
SP - 377
EP - 404
LA - eng
UR - http://eudml.org/doc/83725
ER -
References
top- [1] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. Journal, 21 (1971), pp. 125-146. Zbl0209.13002MR296498
- [2] H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, Proc. 2nd Scheveningen Conf. on Diff. Eq. (1975), ed. W. ECKHAUS, North-Holland (1976). Zbl0345.35045MR509487
- [3] H. Beirão Da Veiga, Proprietà di sommabilità e di limitatezza per soluzioni di disequazioni variazionali ellittiche, Rendiconti del Seminario Matematico della Università di Padova, 46 (1971), pp. 141-171. Zbl0236.35021MR308580
- [4] H. Beirão Da Veiga, Soluzioni forti di equazioni non lineari con vincoli unilaterali sulla frontiera, Lecture at the School « Recenti sviluppi ed applicazioni della teoria delle disequazioni variazionali », Erice (Sicily), 2-12 Mars 1975.
- [5] H. Beirão Da Veiga, Differentiability and bifurcation points for a class of monotone nonlinear operators, Annali Mat. Pura Appl. (to appear). Zbl0363.47027MR433273
- [6] H. Brezis, Problémes unilatéraux, J. Math. Pures Appl., 51 (1972), pp. 1-168. Zbl0237.35001MR428137
- [7] H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations., Contributions to nonlinear functional analysis, E. H. Zarantonello ed., Academic Press (1971), pp. 101-156. Zbl0278.47033MR394323
- [8] H. Brezis - M. Crandall - A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math., 23 (1970), pp. 123-144. Zbl0182.47501MR257805
- [9] H. Brezis - W. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973) 565-590. Zbl0278.35041MR336050
- [10] G. Da Prato, Somme d'applications non lineaires et solutions globales d'équations quasi-linéaires dans les espaces de Banach, Bollettino U.M.I., 4 (1969), pp. 229-240. Zbl0176.45703MR248431
- [11] G. Da Prato, Somme d'applications non-linéaires, Istituto Nazionale di Alta Matematica, Symposia Mathematica, 7 (1971), pp. 233-268. Zbl0234.47048MR333862
- [12] H. Kestelman, Modern Theories of Integration, Dover Publications, New York (1960). Zbl0096.03201MR122951
- [13] M.A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press (1973) (english edition).
- [14] J.L. Lions, Equations aux derivees partielles et calcul des variations., Cours de la Faculté des Sciences de Paris, 2- semestre (1967), (multigr.).
- [15] J.L. Lions - G. Stam-Pacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493-519. Zbl0152.34601MR216344
- [16] G. Mintiy, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), pp. 341-346. Zbl0111.31202MR169064
- [17] G. Minty, On the monotonicity of the gradient of a convex function, Pac. J. Math., 14 (1964), pp. 243-247. Zbl0123.10601MR167859
- [18] J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson et C.ie, Paris (1967). MR227584
- [19] F. Riesz - B. Sz.NAGY, Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest (1953). Zbl0122.11205MR56821
- [20] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), pp. 4413-4416. Zbl0124.06401MR166591
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.