Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions

H. Beirão Da Veiga

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1976)

  • Volume: 3, Issue: 3, page 377-404
  • ISSN: 0391-173X

How to cite

top

Beirão Da Veiga, H.. "Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.3 (1976): 377-404. <http://eudml.org/doc/83725>.

@article{BeirãoDaVeiga1976,
author = {Beirão Da Veiga, H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {377-404},
publisher = {Scuola normale superiore},
title = {Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions},
url = {http://eudml.org/doc/83725},
volume = {3},
year = {1976},
}

TY - JOUR
AU - Beirão Da Veiga, H.
TI - Existence of strong solutions for a class of nonlinear partial differential equations satisfying nonlinear boundary conditions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1976
PB - Scuola normale superiore
VL - 3
IS - 3
SP - 377
EP - 404
LA - eng
UR - http://eudml.org/doc/83725
ER -

References

top
  1. [1] H. Amann, On the existence of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. Journal, 21 (1971), pp. 125-146. Zbl0209.13002MR296498
  2. [2] H. Amann, Nonlinear elliptic equations with nonlinear boundary conditions, Proc. 2nd Scheveningen Conf. on Diff. Eq. (1975), ed. W. ECKHAUS, North-Holland (1976). Zbl0345.35045MR509487
  3. [3] H. Beirão Da Veiga, Proprietà di sommabilità e di limitatezza per soluzioni di disequazioni variazionali ellittiche, Rendiconti del Seminario Matematico della Università di Padova, 46 (1971), pp. 141-171. Zbl0236.35021MR308580
  4. [4] H. Beirão Da Veiga, Soluzioni forti di equazioni non lineari con vincoli unilaterali sulla frontiera, Lecture at the School « Recenti sviluppi ed applicazioni della teoria delle disequazioni variazionali », Erice (Sicily), 2-12 Mars 1975. 
  5. [5] H. Beirão Da Veiga, Differentiability and bifurcation points for a class of monotone nonlinear operators, Annali Mat. Pura Appl. (to appear). Zbl0363.47027MR433273
  6. [6] H. Brezis, Problémes unilatéraux, J. Math. Pures Appl., 51 (1972), pp. 1-168. Zbl0237.35001MR428137
  7. [7] H. Brezis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations., Contributions to nonlinear functional analysis, E. H. Zarantonello ed., Academic Press (1971), pp. 101-156. Zbl0278.47033MR394323
  8. [8] H. Brezis - M. Crandall - A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach spaces, Comm. Pure Appl. Math., 23 (1970), pp. 123-144. Zbl0182.47501MR257805
  9. [9] H. Brezis - W. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973) 565-590. Zbl0278.35041MR336050
  10. [10] G. Da Prato, Somme d'applications non lineaires et solutions globales d'équations quasi-linéaires dans les espaces de Banach, Bollettino U.M.I., 4 (1969), pp. 229-240. Zbl0176.45703MR248431
  11. [11] G. Da Prato, Somme d'applications non-linéaires, Istituto Nazionale di Alta Matematica, Symposia Mathematica, 7 (1971), pp. 233-268. Zbl0234.47048MR333862
  12. [12] H. Kestelman, Modern Theories of Integration, Dover Publications, New York (1960). Zbl0096.03201MR122951
  13. [13] M.A. Krasnosel'skii, Topological methods in the theory of nonlinear integral equations, Pergamon Press (1973) (english edition). 
  14. [14] J.L. Lions, Equations aux derivees partielles et calcul des variations., Cours de la Faculté des Sciences de Paris, 2- semestre (1967), (multigr.). 
  15. [15] J.L. Lions - G. Stam-Pacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), pp. 493-519. Zbl0152.34601MR216344
  16. [16] G. Mintiy, Monotone (nonlinear) operators in Hilbert space, Duke Math. J., 29 (1962), pp. 341-346. Zbl0111.31202MR169064
  17. [17] G. Minty, On the monotonicity of the gradient of a convex function, Pac. J. Math., 14 (1964), pp. 243-247. Zbl0123.10601MR167859
  18. [18] J. Necas, Les méthodes directes en théorie des équations elliptiques, Masson et C.ie, Paris (1967). MR227584
  19. [19] F. Riesz - B. Sz.NAGY, Leçons d'analyse fonctionnelle, Akadémiai Kiadó, Budapest (1953). Zbl0122.11205MR56821
  20. [20] G. Stampacchia, Formes bilinéaires coercitives sur les ensembles convexes, C. R. Acad. Sci. Paris, 258 (1964), pp. 4413-4416. Zbl0124.06401MR166591

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.