On hypoelliptic operators with double characteristics

A. Menikoff

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1977)

  • Volume: 4, Issue: 4, page 689-724
  • ISSN: 0391-173X

How to cite

top

Menikoff, A.. "On hypoelliptic operators with double characteristics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.4 (1977): 689-724. <http://eudml.org/doc/83767>.

@article{Menikoff1977,
author = {Menikoff, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {689-724},
publisher = {Scuola normale superiore},
title = {On hypoelliptic operators with double characteristics},
url = {http://eudml.org/doc/83767},
volume = {4},
year = {1977},
}

TY - JOUR
AU - Menikoff, A.
TI - On hypoelliptic operators with double characteristics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1977
PB - Scuola normale superiore
VL - 4
IS - 4
SP - 689
EP - 724
LA - eng
UR - http://eudml.org/doc/83767
ER -

References

top
  1. [1] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm, Pure Appl. Math., 27 (1974), pp. 585-639. Zbl0294.35020MR370271
  2. [2] A. Calderon - R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A., 69 (1972), pp. 1185-1187. Zbl0244.35074MR298480
  3. [3] F. Cardoso - F. Treves, A necessary condition of local solvability for pseudodifferential equations with double characteristics, Ann. Inst. Fourier, 24 (1974), pp. 225-292. Zbl0273.35058MR350233
  4. [4] J. Duistermaat - L. Hörmander, Fourier Integral Operators - II, Acta Math., 128 (1972), pp. 183-269. Zbl0232.47055MR388464
  5. [5] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1969. Zbl0175.39201MR248435
  6. [6] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171. Zbl0156.10701MR222474
  7. [7] L. Hörmander, Pseudo-differential operators and hypoelliptic equations, A.M.S. Proc. Symp. Pure Math., 10 (1967), pp. 138-183. Zbl0167.09603MR383152
  8. [8] L. Hörmander, Fourier Integral Operators - I, Acta Math., 127 (1971), pp. 79-183. Zbl0212.46601MR388463
  9. [9] L. Hörmander, A class of hypoelliptic pseudo-differential operators with double characteristics, Math. Ann., 217 (1975), pp. 165-188. Zbl0306.35032MR377603
  10. [10] W. Magnus - F. Oberhettinger - R. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, New York, 1966. Zbl0143.08502MR232968
  11. [11] L. Rothschild - E. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), pp. 241-320. Zbl0346.35030MR436223
  12. [12] R. Rubenstein, Local solvability of the operator utt + ia(t)ux + b(t) ut + c(t)u, J. Diff. Equ., 14 (1973), pp. 185-194. Zbl0262.35046MR333495
  13. [13] P. Weston, A. necessary condition for the local solvability of the operator P 2m(x, D) + P2m-1(x, D), (to appear). Zbl0356.35011
  14. [14] J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. für Math., 12 (1974), pp. 85-130. Zbl0317.35076MR352749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.