Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients

Walter Littman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1978)

  • Volume: 5, Issue: 3, page 567-580
  • ISSN: 0391-173X

How to cite

top

Littman, Walter. "Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.3 (1978): 567-580. <http://eudml.org/doc/83792>.

@article{Littman1978,
author = {Littman, Walter},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Control Theory; Hyperbolic Equations; Parabolic Equations},
language = {eng},
number = {3},
pages = {567-580},
publisher = {Scuola normale superiore},
title = {Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients},
url = {http://eudml.org/doc/83792},
volume = {5},
year = {1978},
}

TY - JOUR
AU - Littman, Walter
TI - Boundary control theory for hyperbolic and parabolic partial differential equations with constant coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1978
PB - Scuola normale superiore
VL - 5
IS - 3
SP - 567
EP - 580
LA - eng
KW - Control Theory; Hyperbolic Equations; Parabolic Equations
UR - http://eudml.org/doc/83792
ER -

References

top
  1. [1] L. Ehrenpreis, Fourier analysis in several complex variables, New York, N. Y. (1970). Zbl0195.10401MR285849
  2. [2] H.O. Fattorini - D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension, Archive Rat. Mech. Anal., 4 (1971), pp. 272-292. Zbl0231.93003MR335014
  3. [3] A. Friedman, Generalized functions and partial differential equations, Englewood Cliffs, N. J. (1963). Zbl0116.07002MR165388
  4. [4] I.M. Gelfand - G.E. Shilov, Generalized Functions, vol. 3, Moscow (1958). 
  5. [5] E. Holmgren, Sur l'équation de la propagation de la chaleur, Ark. Mat. Astr. Physik, 4 (1908), pp. 1-4. Zbl39.0977.02JFM39.0977.01
  6. [6] L. Hörmander, Linear partial differential operators, Academic Press Inc., New York, N. Y. (1963). Zbl0108.09301MR248435
  7. [7] B.F. JonesJr., A fundamental solution for the heat equation which is supported in a strip, J. Math. Analysis and Applications, 60 (1977), pp. 314-324. Zbl0357.35043MR450777
  8. [8] D. Ludwig, The Radon transform on Euclidean spaces, Communications in Pure and Applied Math., 19 (1966), pp. 49-81. Zbl0134.11305MR190652
  9. [9] D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic equations, Studies in Applied Math., 52 (1973), pp. 189-211. Zbl0274.35041MR341256
  10. [10] T. Seidman, Boundary observation and control for the heat equation: Differential games and control theory, Marcel Dekker, New York, N. Y. (1974), pp. 321-351. MR417898

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.