An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type

Avron Douglis

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)

  • Volume: 6, Issue: 2, page 193-283
  • ISSN: 0391-173X

How to cite

top

Douglis, Avron. "An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (1979): 193-283. <http://eudml.org/doc/83809>.

@article{Douglis1979,
author = {Douglis, Avron},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Approximate Solution; Approximate Layering Method; Nonlinear Parabolic Systems; Initial-Value Problems; Smoothed Initial Data},
language = {eng},
number = {2},
pages = {193-283},
publisher = {Scuola normale superiore},
title = {An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type},
url = {http://eudml.org/doc/83809},
volume = {6},
year = {1979},
}

TY - JOUR
AU - Douglis, Avron
TI - An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 2
SP - 193
EP - 283
LA - eng
KW - Approximate Solution; Approximate Layering Method; Nonlinear Parabolic Systems; Initial-Value Problems; Smoothed Initial Data
UR - http://eudml.org/doc/83809
ER -

References

top
  1. [1] A.J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), pp. 785-796. MR395483
  2. [2] A.J. Chorin - T.J.R. Hughes - M.F. McCracken - J.E. Marsden, Product formulas and numerical algorithms (1977), presumably to appear. Zbl0358.65082MR488713
  3. [3] H. Cramér, Mathematical methods of statistics, Princeton Univ. Press, Princeton, N. J. (1946). Zbl0063.01014MR16588
  4. [4] A. Douglis, Layering methods for nonlinear partial differential equations of first order, Ann. Inst. Fourier Univ. Grenoble, 22 (1972), pp. 141-227. Zbl0228.35020MR358089
  5. [5] A. Douglis, Lectures on discontinuous solutions of first order nonlinear partial differential equations, North British Symposium on Partial Differential Equations and their Applications. School of Mathematics, University of Newcastleon-Tyne (1972) (multilithed). 
  6. [6] A. Douglis, Layering methods for parabolic systems, Preliminary report. Notices Amer. Math. Soc., 22 (1975), p. A152. 
  7. [7] S.D. Eidel'man, Parabolic systems, North Holland Pub. Co., Amsterdam, 1969. Zbl0181.37403MR252806
  8. [8] A. Friedman, Remarks on nonlinear parabolic equations, Proc. Symp. Appl. Math., 17 (1965), pp. 3-23. Zbl0192.19601MR186938
  9. [9] H. Fujita, On some non-existence and non-uniqueness theorems for nonlinear parabolic equations, Proc. Symp. Pure Math., 18 (Part 1) (1970), pp. 105-113. Zbl0228.35048MR269995
  10. [10] R.T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), pp. 183-203. Zbl0247.35083MR340799
  11. [11] A. Jeffrey, Stability of parabolic systems, Indiana Univ. Math. J., 22 (1973), pp. 1109-1135. Zbl0243.35060MR393858
  12. [12] H. Kawarada, On the solutions of initial-boundary problems for ut = uxx + + 1/(1 - u), Publ. Res. Inst. Math. Sci., 10, no. 3 (1974-1975), pp. 729-736. Zbl0306.35059MR385328
  13. [13] N.N. Kuznetsov, Weak solution of the Cauchy problem for a multi-dimensional quasilinear equation, Mat. Zametki, 2 (1967), pp. 401-410; transl.: Math. Notes, (1967), pp. 733-739. Zbl0184.12901MR223733
  14. [14] N.N. Kuznetsov, Application of the smoothing method to some systems of hyperbolic quasilinear equations, Ž. Vyčisl. Mat. i Mat. Fiz.,13 (1973), pp. 92-102; transl.: USSR Comput. Math. and Math. Phys., 13 (1974), pp. 115-129. Zbl0308.65060MR316905
  15. [15] O.A. Ladyzhenskaya - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of mathematical monographs, vol. 23, A.M.S., Providence, 1968. Zbl0174.15403
  16. [16] H.A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = Au + F(u), Arch. Rational Mech. Anal., 51 (1973), pp. 371-386. Zbl0278.35052MR348216
  17. [17] H.A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics : the method of unbounded Fourier coefficients, Math. Ann., 214 (1975), pp. 205-220. Zbl0286.35006MR385336
  18. [18] H.A. Levine - L.E. Payne, On the nonexistence of global solutions to some abstract Cauchy problems of standard and nonstandard types, Rend. Mat., (6) 8, no. 2 (1975), pp. 413-428. Zbl0311.34074MR390857
  19. [19] J. Marsden, On product formulas for nonlinear semigroups, J. Functional Analysis, 13 (1973), pp. 51-72. Zbl0258.47042MR355682
  20. [20] J. Marsden, A formula for the solution of the Navier-Stokes equations based on a method of Chorin, Bull. Amer. Math. Soc., 80 (1974), pp. 154-158. Zbl0277.35080MR395484
  21. [21] A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Lecture Notes no. 10, Math. Dept., Univ. of Maryland, College Park, Md., 1974. MR512912
  22. [22] V.V. Petrov, Sums of independent random variables, Springer, New York, 1975. Zbl0322.60042MR388499
  23. [23] I.J. Schoenberg, On smoothing operations and their generating functions, Bull. Amer. Math. Soc., 59 (1953), pp. 199-230. Zbl0050.28703MR56042
  24. [24] F. Treves, Approximate solution to Cauchy problems, J. Differential Equations, 11 (1972), pp. 349-363. Zbl0233.35013MR367434
  25. [25] M. Tsutsumi,, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), pp. 173-193. Zbl0273.34044MR355247
  26. [26] M. Tsutsumi, Existence and nonexistence of global solutions of the first boundary value problem for a certain quasi linear parabolic equation, Funkcial. Ekvac., 17 (1974), pp. 13-24. Zbl0308.35063MR344679
  27. [27] M.I. Visik, Boundary-value problems for quasilinear parabolic systems of equations and Cauchy's problem for hyperbolic equations, Dokl. Akad. Nauk SSSR, 140 (1961), pp. 998-1001; transl.: Soviet Math. Dokl., 2 (1961), pp. 1292-1295. Zbl0109.07002MR157123
  28. [28] W. Von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetigen Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1972), no. 11, pp. 231-258. Zbl0251.35052MR313636
  29. [29] W. Von Wahl, Einige Bemerkungen zu meiner Arbeit « Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetigen Funktionen, Manuscripta Math., 11 (1974), pp. 199-201. Zbl0285.35039MR340821
  30. [30] W. Von Wahl, Semilineare parabolische Differentiagleichungen mit starker Nichtlinearität, Manuscripta Math., 16, no. 4 (1975), pp. 395-406. Zbl0318.35049MR390509
  31. [31] T.D. Wentzell, An a priori estimate for the solution of some quasi-linear parabolic systems, Vestnik Moskow. Univ. Ser. I Mat. Meh. 29, no. 1 (1974), pp. 37-44 (transl. in Moscow University Mathematica Bulletin, 29, no. 1 (1974), pp. 28-34). Zbl0304.35057MR352707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.