An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1979)
- Volume: 6, Issue: 2, page 193-283
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDouglis, Avron. "An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 6.2 (1979): 193-283. <http://eudml.org/doc/83809>.
@article{Douglis1979,
author = {Douglis, Avron},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Approximate Solution; Approximate Layering Method; Nonlinear Parabolic Systems; Initial-Value Problems; Smoothed Initial Data},
language = {eng},
number = {2},
pages = {193-283},
publisher = {Scuola normale superiore},
title = {An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type},
url = {http://eudml.org/doc/83809},
volume = {6},
year = {1979},
}
TY - JOUR
AU - Douglis, Avron
TI - An approximate layering method for multi-dimensional nonlinear parabolic systems of a certain type
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1979
PB - Scuola normale superiore
VL - 6
IS - 2
SP - 193
EP - 283
LA - eng
KW - Approximate Solution; Approximate Layering Method; Nonlinear Parabolic Systems; Initial-Value Problems; Smoothed Initial Data
UR - http://eudml.org/doc/83809
ER -
References
top- [1] A.J. Chorin, Numerical study of slightly viscous flow, J. Fluid Mech., 57 (1973), pp. 785-796. MR395483
- [2] A.J. Chorin - T.J.R. Hughes - M.F. McCracken - J.E. Marsden, Product formulas and numerical algorithms (1977), presumably to appear. Zbl0358.65082MR488713
- [3] H. Cramér, Mathematical methods of statistics, Princeton Univ. Press, Princeton, N. J. (1946). Zbl0063.01014MR16588
- [4] A. Douglis, Layering methods for nonlinear partial differential equations of first order, Ann. Inst. Fourier Univ. Grenoble, 22 (1972), pp. 141-227. Zbl0228.35020MR358089
- [5] A. Douglis, Lectures on discontinuous solutions of first order nonlinear partial differential equations, North British Symposium on Partial Differential Equations and their Applications. School of Mathematics, University of Newcastleon-Tyne (1972) (multilithed).
- [6] A. Douglis, Layering methods for parabolic systems, Preliminary report. Notices Amer. Math. Soc., 22 (1975), p. A152.
- [7] S.D. Eidel'man, Parabolic systems, North Holland Pub. Co., Amsterdam, 1969. Zbl0181.37403MR252806
- [8] A. Friedman, Remarks on nonlinear parabolic equations, Proc. Symp. Appl. Math., 17 (1965), pp. 3-23. Zbl0192.19601MR186938
- [9] H. Fujita, On some non-existence and non-uniqueness theorems for nonlinear parabolic equations, Proc. Symp. Pure Math., 18 (Part 1) (1970), pp. 105-113. Zbl0228.35048MR269995
- [10] R.T. Glassey, Blow-up theorems for nonlinear wave equations, Math. Z., 132 (1973), pp. 183-203. Zbl0247.35083MR340799
- [11] A. Jeffrey, Stability of parabolic systems, Indiana Univ. Math. J., 22 (1973), pp. 1109-1135. Zbl0243.35060MR393858
- [12] H. Kawarada, On the solutions of initial-boundary problems for ut = uxx + + 1/(1 - u), Publ. Res. Inst. Math. Sci., 10, no. 3 (1974-1975), pp. 729-736. Zbl0306.35059MR385328
- [13] N.N. Kuznetsov, Weak solution of the Cauchy problem for a multi-dimensional quasilinear equation, Mat. Zametki, 2 (1967), pp. 401-410; transl.: Math. Notes, (1967), pp. 733-739. Zbl0184.12901MR223733
- [14] N.N. Kuznetsov, Application of the smoothing method to some systems of hyperbolic quasilinear equations, Ž. Vyčisl. Mat. i Mat. Fiz.,13 (1973), pp. 92-102; transl.: USSR Comput. Math. and Math. Phys., 13 (1974), pp. 115-129. Zbl0308.65060MR316905
- [15] O.A. Ladyzhenskaya - V.A. Solonnikov - N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Translations of mathematical monographs, vol. 23, A.M.S., Providence, 1968. Zbl0174.15403
- [16] H.A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = Au + F(u), Arch. Rational Mech. Anal., 51 (1973), pp. 371-386. Zbl0278.35052MR348216
- [17] H.A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics : the method of unbounded Fourier coefficients, Math. Ann., 214 (1975), pp. 205-220. Zbl0286.35006MR385336
- [18] H.A. Levine - L.E. Payne, On the nonexistence of global solutions to some abstract Cauchy problems of standard and nonstandard types, Rend. Mat., (6) 8, no. 2 (1975), pp. 413-428. Zbl0311.34074MR390857
- [19] J. Marsden, On product formulas for nonlinear semigroups, J. Functional Analysis, 13 (1973), pp. 51-72. Zbl0258.47042MR355682
- [20] J. Marsden, A formula for the solution of the Navier-Stokes equations based on a method of Chorin, Bull. Amer. Math. Soc., 80 (1974), pp. 154-158. Zbl0277.35080MR395484
- [21] A. Pazy, Semi-groups of linear operators and applications to partial differential equations, Lecture Notes no. 10, Math. Dept., Univ. of Maryland, College Park, Md., 1974. MR512912
- [22] V.V. Petrov, Sums of independent random variables, Springer, New York, 1975. Zbl0322.60042MR388499
- [23] I.J. Schoenberg, On smoothing operations and their generating functions, Bull. Amer. Math. Soc., 59 (1953), pp. 199-230. Zbl0050.28703MR56042
- [24] F. Treves, Approximate solution to Cauchy problems, J. Differential Equations, 11 (1972), pp. 349-363. Zbl0233.35013MR367434
- [25] M. Tsutsumi,, On solutions of semilinear differential equations in a Hilbert space, Math. Japon., 17 (1972), pp. 173-193. Zbl0273.34044MR355247
- [26] M. Tsutsumi, Existence and nonexistence of global solutions of the first boundary value problem for a certain quasi linear parabolic equation, Funkcial. Ekvac., 17 (1974), pp. 13-24. Zbl0308.35063MR344679
- [27] M.I. Visik, Boundary-value problems for quasilinear parabolic systems of equations and Cauchy's problem for hyperbolic equations, Dokl. Akad. Nauk SSSR, 140 (1961), pp. 998-1001; transl.: Soviet Math. Dokl., 2 (1961), pp. 1292-1295. Zbl0109.07002MR157123
- [28] W. Von Wahl, Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetigen Funktionen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, (1972), no. 11, pp. 231-258. Zbl0251.35052MR313636
- [29] W. Von Wahl, Einige Bemerkungen zu meiner Arbeit « Gebrochene Potenzen eines elliptischen Operators und parabolische Differentialgleichungen in Räumen hölderstetigen Funktionen, Manuscripta Math., 11 (1974), pp. 199-201. Zbl0285.35039MR340821
- [30] W. Von Wahl, Semilineare parabolische Differentiagleichungen mit starker Nichtlinearität, Manuscripta Math., 16, no. 4 (1975), pp. 395-406. Zbl0318.35049MR390509
- [31] T.D. Wentzell, An a priori estimate for the solution of some quasi-linear parabolic systems, Vestnik Moskow. Univ. Ser. I Mat. Meh. 29, no. 1 (1974), pp. 37-44 (transl. in Moscow University Mathematica Bulletin, 29, no. 1 (1974), pp. 28-34). Zbl0304.35057MR352707
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.