On the uniqueness of the Cauchy problem for partial differential operators with multiple characteristics
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1980)
- Volume: 7, Issue: 2, page 257-285
 - ISSN: 0391-173X
 
Access Full Article
topHow to cite
topZeman, Marvin. "On the uniqueness of the Cauchy problem for partial differential operators with multiple characteristics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 7.2 (1980): 257-285. <http://eudml.org/doc/83838>.
@article{Zeman1980,
	author = {Zeman, Marvin},
	journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
	keywords = {Cauchy problem; multiple characteristics; sub-principal symbol},
	language = {eng},
	number = {2},
	pages = {257-285},
	publisher = {Scuola normale superiore},
	title = {On the uniqueness of the Cauchy problem for partial differential operators with multiple characteristics},
	url = {http://eudml.org/doc/83838},
	volume = {7},
	year = {1980},
}
TY  - JOUR
AU  - Zeman, Marvin
TI  - On the uniqueness of the Cauchy problem for partial differential operators with multiple characteristics
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 1980
PB  - Scuola normale superiore
VL  - 7
IS  - 2
SP  - 257
EP  - 285
LA  - eng
KW  - Cauchy problem; multiple characteristics; sub-principal symbol
UR  - http://eudml.org/doc/83838
ER  - 
References
top- [1] A.P. Calderón, Uniqueness in the Cauchy problem for partial differential equations, Amer. J. Math., 80 (1958), pp. 16-36. Zbl0080.30302MR104925
 - [2] A.P. Calderón, Existence and uniqueness theorems for systems of partial differential equations, in Fluid Dynamics and Applied Mathematics, Gordon and Breach, New York, 1962, pp. 147-195. Zbl0147.08202MR156078
 - [3] T. Carleman, Sur un problème d'unicité pour les systèmes d'équations aux derivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys., 26B, no. 17 (1939), pp. 1-9. Zbl0022.34201JFM65.0394.03
 - [4] P. Cohen, The non-uniqueness of the Cauchy problem, O.N.R. Tech. Rep. 93, Stanford, 1960.
 - [5] P.M. Goorjian, The uniqueness of the Cauchy problem for partial differential equations which may have multiple characteristics, Trans. Amer. Math. Soc., 146 (1969), pp. 493-509. Zbl0188.41502MR252832
 - [6] L. Hörmander, On the uniqueness of the Cauchy problem I-II, Math. Scand.6 (1958), pp. 213-225; 7 (1959), pp. 177-190. Zbl0088.30201MR104924
 - [7] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin-Göttingen- Heidelberg, 1964. Zbl0108.09301MR404822
 - [8] L. Hörmander, Non-uniqueness for the Cauchy problem, in Fourier Integral Operators and Partial Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 1975. Zbl0315.35019MR419980
 - [9] J.J. Kohn - L. Nirenberg, An algebra of pseudo-differential operators, Comm. Pure Appl. Math., 18 (1965), pp. 269-305. Zbl0171.35101MR176362
 - [10] W. Matsumoto, Uniqueness in the Cauchy problem for partial differential equations with multiple characteristic roots, J. Math. Kyoto Univ., 15, no. 3 (1975), pp. 479-525. Zbl0331.35014MR486945
 - [11] S. Mizohata, Unicité du prolongement des solutions des équations elliptiques du quatrième ordre, Proc. Japan Acad., 34 (1958), pp. 687-692. Zbl0085.08501MR105553
 - [12] S. Mizohata - Y. Ohya, Sur la condition de E. E. Levi concernant des équations hyperboliques, Publ. Res. Inst. Math. Sci., Kyoto Univ. Ser. A, 4 (1968), pp. 511-526. Zbl0202.37401MR276606
 - [13] S. Mizohata - Y. Ohya, Sur la condition d'hyperbolicité pour les équations caractéristiques multiples, II, Japan. J. Math., 40 (1971), pp. 63-104. Zbl0231.35048MR303100
 - [14] L. Nirenberg, Lectures on Partial Differential Equations, Proc. Reg. Conf. at Texas Tech., May 1972, Conf. Board of the A.M.S.
 - [15] Y. Ohya, On E. E. Levi's functions for hyperbolic equations with triple characteristics, Comm. Pure Appl. Math., 25 (1972), pp. 257-263. Zbl0238.35050MR298223
 - [16] R.N. Pedersen, Uniqueness in Cauchy's problem for elliptic equations with double characteristics, Ark. Mat., 6 (1967), pp. 535-548. Zbl0146.34201
 - [17] A. Plís, A smooth linear elliptic differential equation without any solution in a sphere, Comm. Pure Appl. Math., 14 (1961), pp. 599-617. Zbl0163.13103MR136846
 - [18] M. Sussman, On uniqueness in Cauchy's problem for elliptic operators with characteristics of multiplicity greater than two, Tôhoku Math. J., 29 (1977), pp. 165-188. Zbl0355.35028MR463692
 - [19] F. Tréves, Linear Partial Differential Equations with Constant Coefficients, Gordon and Breach, New York, 1966. Zbl0164.40602MR224958
 - [20] K. Watanabe, On the uniqueness of the Cauchy problem for certain elliptic equations with triple characteristics, Tôhoku Math. J., 23 (1971), pp. 473-490. Zbl0237.35032MR308584
 - [21] K. Watanabe - C. Zuily, On the uniqueness of the Cauchy problem for elliptic differential operators with smooth characteristics of variable multiplicity, Comm. Partial Differential Equations, 2, no. 8 (1977), pp. 831-854. Zbl0378.35023MR447800
 - [22] M. Zeman, Uniqueness of solutions of the Cauchy problem for linear partial differential equations with characteristics of constant multiplicity, J. Differential Equations, 24 (1977), pp. 178-196. Zbl0349.35012MR599595
 - [23] M. Zeman, Uniqueness of solutions of the Cauchy problem for linear partial differential equations with characteristics of variable multiplicity, J. Differential Equations, 27 (1978), pp. 1-18. Zbl0367.35055MR473447
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.