Steiner's formula for the volume of a parallel hypersurface in a riemannian manifold

E. Abbena; A. Gray; L. Vanhecke

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1981)

  • Volume: 8, Issue: 3, page 473-493
  • ISSN: 0391-173X

How to cite

top

Abbena, E., Gray, A., and Vanhecke, L.. "Steiner's formula for the volume of a parallel hypersurface in a riemannian manifold." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 8.3 (1981): 473-493. <http://eudml.org/doc/83866>.

@article{Abbena1981,
author = {Abbena, E., Gray, A., Vanhecke, L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {hypersurfaces; volumes of geodesic balls; Weyl tube formula; parallel hypersurfaces of Riemannian manifolds},
language = {eng},
number = {3},
pages = {473-493},
publisher = {Scuola normale superiore},
title = {Steiner's formula for the volume of a parallel hypersurface in a riemannian manifold},
url = {http://eudml.org/doc/83866},
volume = {8},
year = {1981},
}

TY - JOUR
AU - Abbena, E.
AU - Gray, A.
AU - Vanhecke, L.
TI - Steiner's formula for the volume of a parallel hypersurface in a riemannian manifold
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1981
PB - Scuola normale superiore
VL - 8
IS - 3
SP - 473
EP - 493
LA - eng
KW - hypersurfaces; volumes of geodesic balls; Weyl tube formula; parallel hypersurfaces of Riemannian manifolds
UR - http://eudml.org/doc/83866
ER -

References

top
  1. [AB] J. Abram, Tensor calculus through differential geometry, Butterworths, London, 1965. Zbl0132.41903MR220199
  2. [AL1] C.B. Allendoerfer, The Euler number of a Riemannian manifold, Amer. J. Math., 62 (1940), pp. 243-248. Zbl0024.35101MR2251JFM66.0869.04
  3. [AL2] C.B. Allendoerfer, Steiner's formula on a general Sn+1, Bull. Amer. Math. Soc., 54 (1948), pp. 128-135. Zbl0033.39503MR25172
  4. [AL3] C.B. Allendoerfer, Global differential geometry of imbedded manifolds, Problemi di geometria differenziale in grande, C.I.M.E., Cremonese, Roma, 1958. Zbl0112.13602
  5. [AW] C.B. Allendoerfer - A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc., 53 (1943), pp. 101-129. Zbl0060.38102MR7627
  6. [BGM] M. Berger - P. Gauduchon - E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Mathematics, vol. 194, Springer-Verlag, 1971. Zbl0223.53034MR282313
  7. [BG] M. Berger - B. Gostiaux, Géométrie Différentielle, Armand Colin, Paris, 1972. Zbl0251.53001MR494180
  8. [BDP] J. Bertrand - C.F. Diguet - V. Puiseux, Demonstration d'un théorème de Gauss, Journal de Mathématiques, 13 (1848), pp. 80-90. 
  9. [BS] A.L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik, vol. 93, Springer-Verlag, 1978. Zbl0387.53010MR496885
  10. [BC] R. Bishop - R. Crittenden, Geometry of manifolds, Academic Press, 1964. Zbl0132.16003MR169148
  11. [BK] W. Blaschke, Vorlesungen über Integratgeometrie, Deutscher Verlag der Wissenschaften, 1955. Zbl0066.40703MR76373
  12. [BR] W. Blaschke - H. Reichardt, Einführung in die Differentialgeometrie, Springer-Verlag, 1960. Zbl0091.34001MR116267
  13. [BF] T. Bonnesen - W. Fenchel, Theorie der konvexen Körper, Ergebnisse der Mathematik, Springer-Verlag, 1934, Chelsea reprint, 1948. Zbl0277.52001MR344997
  14. [CH1] S.S. Chern, On the kinematic formula in the Euclidean space of N dimensions, Amer. J. Math., 74 (1952), pp. 227-236. Zbl0046.16101MR47353
  15. [CH2] S.S. Chern, On the kinematic formula in integral geometry, J. Math. Mech., 16 (1966), pp. 101-118. Zbl0142.20704MR198406
  16. [DC] M. Do Carmo, Differential geometry of curves and surfaces, Prentice Hall, 1978. Zbl0326.53001MR394451
  17. [ER] J. Erbacher, Riemannian manifolds of constant curvature and growth functions of submanifolds, Michigan Math. J., 19 (1972), pp. 215-223. Zbl0237.53038MR310810
  18. [FD1] H. Federer, Curvature measures, Trans. Amer. Math. Soc., 93 (1959), pp. 418-491. Zbl0089.38402MR110078
  19. [FD2] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. Zbl0176.00801MR257325
  20. [FE] E. Ffrmi, Sopra i fenomeni che avvengono in vicinanza di una linea oraria, Atti R. Accad. Lincei Rend. Cl. Sci. Fis. Mat. Nat., 31 (1922), pp. 21-23, 51-52, 101-103. Also The collected works of E. Fermi, vol. 1, pp. 17-19, The University of Chicago Press, 1962. JFM48.1309.05
  21. [FI] F. Fiala, Le problème des isopérimètres sur les surfaces ouvertes à coubure positive, Comment. Math. Helv., 13 (1941), pp. 293-341. Zbl0025.23003MR6422JFM67.0698.01
  22. [FL1] F.J. Flaherty, The volume of a tube in complex projective space, Illinois J. Math., 16 (1972), pp. 627-638. Zbl0248.53051MR315638
  23. [FL2] F.J. Flaherty, Curvature measures for piecewise linear manifolds, Bull. Amer. Math. Soc., 79 (1973), pp. 100-102. Zbl0261.53049MR309038
  24. [GR1] A. Gray, Minimal varieties and almost Hermitian submanifolds, Mich. Math. J., 12 (1965), pp. 273-287. Zbl0132.16702MR184185
  25. [GR2] A. Gray, A generalization of F. Schur's theorem, J. Math. Soc. Japan, 21 (1969), pp. 454-457. Zbl0179.26903MR248681
  26. [GR3] A. Gray, Some relations between curvature and characteristic classes, Math. Ann., 184 (1970), pp. 257-267. Zbl0181.49901MR261492
  27. [GR4] A. Gray, Weak holonomy groups, Math. Z., 123 (1971), pp. 290-300. Zbl0222.53043MR293537
  28. [GR5] A. Gray, The volume of a small geodesic ball in a Riemannian manifold, Michigan Math. J., 20 (1973), pp. 329-344. Zbl0279.58003MR339002
  29. [GR6] A. Gray, Comparison theorems for the volumes of tubes as generalizations of the Weyl tube formula, Topology (to appear). Zbl0487.53035MR642000
  30. [GV1] A. Gray - L. Vanhecke, Riemannian geometry as determined by the volumes of small geodesic balls, Acta Math., 142 (1979), pp. 157-198. Zbl0428.53017MR521460
  31. [GV2] A. Gray - L. Vanhecke, The volume of tubes about curves in a Riemannian manifold, Proc. London Math. Soc. (to appear). Zbl0491.53035MR647431
  32. [GV3] A. Gray - L. Vanhecke, The volume of tubes in a Riemannian manifold, (to appear). Zbl0511.53059MR706043
  33. [GV4] A. Gray - L. Vanhecke, Oppervlakten van geodetische cirkels op oppervlakken, Med. Konink. Acad. Wetensch. Lett. Schone Kunst. België Kl. Wetensch., 42, No. 1 (1980), pp. 1-17. Zbl0425.53011MR573192
  34. [GS] P.A. Griffiths, Complex differential geometry and curvature integrals associated to singularities of complex analytic varieties, Duke Math. J., 45 (1978), pp. 427-512. Zbl0409.53048MR507455
  35. [GN1] N. Grossman, Polynomial estimates for Betti numbers of loop spaces of symmetric and close to symmetric Riemannian manifolds, Indiana Math. J., 20 (1971), pp. 717-731. Zbl0215.23402MR270308
  36. [GN2] N. Grossman, On characterization of Riemannian manifolds by growth of tubular neigborhoods, Proc. Amer. Math. Soc., 32 (1972), pp. 556-560. Zbl0241.53030MR296855
  37. [GU] H.W. Guggenheimer, Differential geometry, McGraw Hill, 1963. Zbl0116.13402MR156266
  38. [HA1] H. Hadwiger, Die erweiterten Steinerschen Formeln für ebene und sphitrische Bereiche, Comment. Math. Helv., 18 (1945), pp. 59-72. Zbl0063.01850MR14262
  39. [HA2] H. Hadwiger, Inhaltsungleichungen für innere und äusere Parallelmengen, Experientia (Basel), 2 (1946), p. 490. Zbl0060.13206MR18714
  40. [HA3] H. Hadwiger, Über das volumen der Parallelmengen, Mitt. Naturforsch. Ges. Bern., N.F., 3 (1946), pp. 121-125. Zbl0061.38103MR22690
  41. [HA4] H. Hadwiger, Über die erweiterten Steinerschen Formeln für Parallelmengen, Rev. Mat. Hispano-Americana, 4a serie, 6 (1946), pp. 160-163. Zbl0063.01854MR19950
  42. [HA5] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, 1957. Zbl0078.35703MR102775
  43. [HS] S. Haas - H.L. Schmid, Mathematisches Wörterbuch, Akademie-Verlag, B. G. Teubner, Berlin, 1967. 
  44. [HZ] G. Herglotz, Über die Steinersche Formel für Parallelflächen, Abh. Math. Sem. Hansischen Univ., 15 (1943), pp. 59-72. Zbl0028.08701MR15832
  45. [HR1] R.A. Holzsager, Riemannian manifolds of finite order, Bull. Amer. Math. Soc., 78 (1972), pp. 200-201. Zbl0229.53028MR288695
  46. [HR2] R.A. Holzsager, A characterization of Riemannian manifolds of constant curvature, J. Differential Geometry, 8 (1973), pp. 103-106. Zbl0279.53053MR358630
  47. [HW] R.A. Holzsager - H. Wu, A characterization of two dimensional Riemannian manifolds of constant curvature, Michigan Math. J., 17 (1970), pp. 297-299. Zbl0189.52403MR305315
  48. [HO] H. Hotelling, Tubes and spheres in n-space and a class of statistical problems, Amer. J. Math., 61 (1939), pp. 440-460. Zbl0020.38302MR1507387JFM65.0795.02
  49. [OH] D. Ohmann, Eine verallgemeinerung der Steinerschen Formel, Math. Ann., 129 (1955), pp. 204-212. Zbl0066.40702MR69524
  50. [ON] B. O'Neill, Elementary differential geometry, Academic Press, 1966. Zbl0971.53500MR203595
  51. [OS1] R. Osserman, The isoperimetric inequatity, Bull. Amer. Math. Soc., 84 (1978), pp. 1182-1238. Zbl0411.52006MR500557
  52. [OS2] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly, 86 (1979), pp. 1-29. Zbl0404.52012MR519520
  53. [SA] L.A. Santaló, Integral geometry and geometric probability, Encyclopedia of Mathematics and its Applications, Addison Wesley, 1976. Zbl0342.53049MR433364
  54. [SP] M. Spivak, A comprehensive introduction to differential geometry, vol. 5, Publish or Perish, Boston, 1975. Zbl0306.53003
  55. [STE] J. Steiner, Über parallele Flächen, Monatsbericht der Akademie der Wissenchaften zuBerlin (1840), pp. 114-118,Also Werke, vol. 2 (1882), pp. 171-176. 
  56. [SW] R. Sulanke - P. Wintgen, Differentialgeometrie und Faserbündel, Birkhäuser Verlag, 1972. Zbl0271.53035MR413153
  57. [VA1] E. Vidal Abascal, Sobre un teorema de Liouville y generalización de fórmulas de Steiner, Rev. Mat. Hispano-Americana, 4a serie, 6 (1946), pp. 3-8. MR19951
  58. [VA2] E. Vidal Abascal, Sobre fórmulas de Steiner para el área de una elipse, Rev. Geodésica, 6 (1947), pp. 425-431. 
  59. [VA3] E. Vidal Abascal, A generalization of Steiner's formula, Bull. Amer. Math. Soc., 53 (1947), pp. 841-844. Zbl0031.26903MR25174
  60. [VA4] E. Vidal Abascal, Extensión del concepto de curvas paralelas sobre una superficie. Longitud y área correspondientes a la curvatura así deducida de otra dada, Rev. Math. Hispano-Americana, 4a serie, 7 (1947), pp. 3-12. 
  61. [VA5] E. Vidal Abascal, Area engendrada sobre una superficie por un arco de geodésica cuando uno de sus extremos recorre una curva fija y longitud de la curva descrita por el otro extremo, Rev. Mat. Hispano-Americana, 4a serie, 7 (1947), pp. 132-142. MR25175
  62. [VA6] E. Vidal Abascal, Curvas paralelas sobre superficies de curvatura constante, Rev. Union Math. Argentina, 8 (1948), pp. 135-138. Zbl0031.07801MR27549
  63. [VA7] E. Vidal Abascal, Introducción a la geometría diferencial, Dossat, Madrid, 1956. Zbl0075.16402MR74847
  64. [VA8] E. Vidal Abascal, Nueva deducción de las fórmulas de Steiner en un general Sn+1, Collectanea Mathematica, 14 (1962), pp. 47-50. Zbl0109.15201MR149427
  65. [WY] H. Weyl, On the volume of tubes, Amer. J. Math., 61 (1939), pp. 461-472. Zbl0021.35503MR1507388JFM65.0796.01
  66. [WO] R.A. Wolf, The volume of tubes in complex projective space, Trans. Amer. Math. Soc., 157 (1971), pp. 347-371. Zbl0241.53033MR281237
  67. [WU] H. Wu, A characteristic property of the Euclidean plane, Michigan Math. J., 16 (1969), pp. 141-148. Zbl0175.48704MR246240

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.