Type I criteria and the Plancherel formula for Lie groups with co-compact radical

Ronald L. Lipsman

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 2, page 263-285
  • ISSN: 0391-173X

How to cite

top

Lipsman, Ronald L.. "Type I criteria and the Plancherel formula for Lie groups with co-compact radical." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.2 (1982): 263-285. <http://eudml.org/doc/83882>.

@article{Lipsman1982,
author = {Lipsman, Ronald L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {orbit method; type I; Plancherel formula; reductive Lie groups; polarizations; irreducible unitary representations; holomorphic induction},
language = {eng},
number = {2},
pages = {263-285},
publisher = {Scuola normale superiore},
title = {Type I criteria and the Plancherel formula for Lie groups with co-compact radical},
url = {http://eudml.org/doc/83882},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Lipsman, Ronald L.
TI - Type I criteria and the Plancherel formula for Lie groups with co-compact radical
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 2
SP - 263
EP - 285
LA - eng
KW - orbit method; type I; Plancherel formula; reductive Lie groups; polarizations; irreducible unitary representations; holomorphic induction
UR - http://eudml.org/doc/83882
ER -

References

top
  1. [1] L. Auslander - C. Moore, Unitary representations of solvable Lie groups, Mem. Amer. Math. Soc., 62 (1966). Zbl0204.14202MR207910
  2. [2] J. Brezin, Unitary representation theory for solvable Lie groups, Mem. Amer. Math. Soc., 79 (1968). Zbl0157.36603MR227311
  3. [3] J. Charbonnel, La formule de Plancherel pour un groupe de Lie résoluble connexe, Thèse 3ième cycle, U. ParisVII (1976). (See also Lectures Notes in Math., 587 (1977), pp. 32-76.) Zbl0365.22009MR486309
  4. [4] J. Charbonnel - M. Khalgui, Polarisations pour un certain type de groupes de Lie, C.R. Acad. Sci., 287 (1978), pp. 915-917. Zbl0394.22013MR520767
  5. [5] M. Duflo, Sur les extensions des representations irreductibles des groupes de Lie nilpotents, Ann. Sci. École Norm. Sup., 5 (1972), pp. 71-120. Zbl0241.22030MR302823
  6. [6] M. Duflo, Construction de représentations unitaires d'un groupe de Lie, Cortona (1980), preprint. MR626830
  7. [7] M. Duflo - C. Moore, On the regular representation of a non-unimodular locally compact group, J. Functional Analysis, 21 (1976), pp. 209-243. Zbl0317.43013MR393335
  8. [8] Harish-Chandra, Harmonic analysis on real reductive groups - I, J. Functional Analysis, 19 (1975), pp. 104-204. Zbl0315.43002MR399356
  9. [9] R. Kallman, Certain topological groups are type I, Bull. Amer. Math. Soc., 76 (1970), pp. 404-406. Zbl0192.48202MR255725
  10. [10] R. Kallman, Certain topological groups are type I. Part 11, Advances in Math., 10 (1973), pp. 221-255. Zbl0255.22012MR338256
  11. [11] M. Khalgui, Sur les caracteres des groupes de Lie à radical co-compact, preprint. 
  12. [12] A. Kleppner - R. Lipsman, The Plancherel formula for group extensions, Ann. Sci. École Norm. Sup., 5 (1972), pp. 459-516. Zbl0239.43003MR342641
  13. [13] A. Kleppner - R. Lipsman, The Plancherel formula for group extensions - II, Ann. Sci. École Norm. Sup., 6 (1973), pp. 103-132. Zbl0258.43001
  14. [14] R. Lipsman, Characters of Lie groups - II: Real polarizations and the orbital-integral character formula, J. Analyse Math., 31 (1977), pp. 257-286. Zbl0351.22009MR579006
  15. [15] R. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures Appl., 59 (1980), pp. 337-374. Zbl0421.22005MR604474
  16. [16] R. Lipsman, Orbit theory and representations of Lie groups with co-compact radical, J. Math. Pures Appl., 60 (1981), to appear. Zbl0494.22011MR664340
  17. [17] R. Lipsman - J. Wolf, The Plancherel formula for parabolic subgroups of the classical groups, J. Analyse Math., 34 (1978), pp. 120-161. Zbl0398.43009MR531273
  18. [18] L. Pukanszky, Characters of connected Lie groups, Acta Math., 133 (1974), pp. 81-137. Zbl0323.22011MR409728
  19. [19] L. Pukanszky, Unitary representations of Lie groups with co-compact radical and applications, Trans. Amer. Math. Soc., 236 (1978), pp. 1-50. Zbl0389.22009MR486313
  20. [20] L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. fcole Norm. Sup., 4 (1971), pp. 464-608. Zbl0238.22010MR439985
  21. [21] M. Vergne, A Plancherel formula without group representations, preprint. MR733319

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.