Asymmetric unbounded liquid bridges

Thomas I. Vogel

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1982)

  • Volume: 9, Issue: 3, page 433-442
  • ISSN: 0391-173X

How to cite

top

Vogel, Thomas I.. "Asymmetric unbounded liquid bridges." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 9.3 (1982): 433-442. <http://eudml.org/doc/83887>.

@article{Vogel1982,
author = {Vogel, Thomas I.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {capillarity; surface tension; mean curvature; Caccioppolli sets; liquid bridge; hanging meniscus},
language = {eng},
number = {3},
pages = {433-442},
publisher = {Scuola normale superiore},
title = {Asymmetric unbounded liquid bridges},
url = {http://eudml.org/doc/83887},
volume = {9},
year = {1982},
}

TY - JOUR
AU - Vogel, Thomas I.
TI - Asymmetric unbounded liquid bridges
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1982
PB - Scuola normale superiore
VL - 9
IS - 3
SP - 433
EP - 442
LA - eng
KW - capillarity; surface tension; mean curvature; Caccioppolli sets; liquid bridge; hanging meniscus
UR - http://eudml.org/doc/83887
ER -

References

top
  1. [1] E. De Giorgi, F. Colombini, L.C. Piccinini, Frontiere orientate di misura minima e questioni collegate, Quaderno Scuola Norm. Sup., Pisa (1972). Zbl0296.49031MR493669
  2. [2] C. Gerhardt, Existence and regularity of capillary surfaces, Boll. Un. Mat. Ital., 10 (1974), pp. 317-335. Zbl0314.49019MR365316
  3. [3] E. Gonzalez, Regolarità per il problema della goccia appoggiata, Rend. Sem. Mat. Univ., Padova, 58 (1977), pp. 24-33. Zbl0414.49033
  4. [4] E. Gonzalez, Sul problema della goccia appoggiata, Rend. Sem. Mat. Univ., Padova, 55 (1976), pp. 289-301. Zbl0361.49027MR493670
  5. [5] U. Massari, Esistenza e regolarità della ipersuperfici di curvatura media assegnata in Rn, Arch. Rational Mech. Anal., 55 (1974), pp. 357-382. Zbl0305.49047MR355766
  6. [6] M. Miranda, Superfici cartesiane generalizzate ed insiemi di perimetro localmente finito sui prodotti cartesiani, Ann. Scuola Norm. Sup., Pisa, 18 (1964), pp. 515-542. Zbl0152.24402MR174706
  7. [7] D. Siegel, Height estimates for capillary surfaces, Pacific J. Math., 88, no. 2 (1980), pp. 471-515. Zbl0411.35043MR607989
  8. [8] B. Turkington, Height estimates for exterior problems of capillary type, Pacific J. Math., 88, no. 2 (1980), pp. 517-540. Zbl0474.76012MR607990
  9. [9] T. Vogel, Symmetric and asymmetric unbounded liquid bridges, Dissertation, Stanford University, 1980. 
  10. [10] T. Vogel, Symmetric unbounded liquid bridges, Pacific J. Math., to appear. Zbl0504.76025MR687969
  11. [11] T. Vogel, Unbounded parametric surfaces of prescribed mean curvature, Indiana Univ. Math. J., 31, no. 2 (1982), pp. 281-288. Zbl0457.53031MR648178

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.