Star shaped coincidence sets in the obstacle problem

Shigeru Sakaguchi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 1, page 123-128
  • ISSN: 0391-173X

How to cite

top

Sakaguchi, Shigeru. "Star shaped coincidence sets in the obstacle problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.1 (1984): 123-128. <http://eudml.org/doc/83921>.

@article{Sakaguchi1984,
author = {Sakaguchi, Shigeru},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {obstacle problem; coincidence set; star shaped},
language = {eng},
number = {1},
pages = {123-128},
publisher = {Scuola normale superiore},
title = {Star shaped coincidence sets in the obstacle problem},
url = {http://eudml.org/doc/83921},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Sakaguchi, Shigeru
TI - Star shaped coincidence sets in the obstacle problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 1
SP - 123
EP - 128
LA - eng
KW - obstacle problem; coincidence set; star shaped
UR - http://eudml.org/doc/83921
ER -

References

top
  1. [1] H. Brezis - D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23 (1974), pp. 831-841. Zbl0278.49011MR361436
  2. [2] L.A. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math., 139 (1978), pp. 155-184. Zbl0386.35046MR454350
  3. [3] L.A. Caffarelli - D. Kinderlehrer, Potential methods in variational inequalities, J. D'Analyse Math., 37 (1980), pp. 285-295. Zbl0455.49010MR583641
  4. [4] L.A. Caffarelli - J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. P.D.E., 7 (1982), pp. 1337-1379. Zbl0508.49013MR678504
  5. [5] A. Friedmar - D. Kinderlehrer, A one phase Stefan problem, Indiana Univ. Math. J., 24 (1975), pp. 1005-1035. Zbl0334.49002
  6. [6] D. Kinderlehrer, The coincidence set of solutions of certain variational inequalities, Arch. Rational Mech. Anal., 40 (1971), pp. 231-250. Zbl0219.49014MR271799
  7. [7] D. Kinderlehrer - L. Nirenberg, Regularity in free boundary problems, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 4 (1977), pp. 373-391. Zbl0352.35023MR440187
  8. [8] D. Kinderlehrer - G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, New York-London-Toronto- Sydney-San Francisco, 1980. Zbl0457.35001MR567696
  9. [9] H. Lewy, An inversion of the obstacle problem and its explicit solution, Ann. Scuola Norm. Sup. Pisa, Ser. IV, 6 (1979), pp. 561-571. Zbl0428.35080MR563334
  10. [10] H. Lewy - G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), pp. 153-188. Zbl0167.11501MR247551

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.