Linearized stability results in continuous interpolation spaces

A. Schiaffino; A. Tesei

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 2, page 281-301
  • ISSN: 0391-173X

How to cite

top

Schiaffino, A., and Tesei, A.. "Linearized stability results in continuous interpolation spaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.2 (1984): 281-301. <http://eudml.org/doc/83932>.

@article{Schiaffino1984,
author = {Schiaffino, A., Tesei, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {interpolation techniques; asymptotic stability; stationary solution; quasilinear Cauchy problem; nonlinear diffusion problems},
language = {eng},
number = {2},
pages = {281-301},
publisher = {Scuola normale superiore},
title = {Linearized stability results in continuous interpolation spaces},
url = {http://eudml.org/doc/83932},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Schiaffino, A.
AU - Tesei, A.
TI - Linearized stability results in continuous interpolation spaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 2
SP - 281
EP - 301
LA - eng
KW - interpolation techniques; asymptotic stability; stationary solution; quasilinear Cauchy problem; nonlinear diffusion problems
UR - http://eudml.org/doc/83932
ER -

References

top
  1. [1] J. Baillon, Caractère borné de certains générateurs de semigroups linéaires dans les espaces de Banach, C. R. Acad. Sc. Paris Série A, 290 (1980), pp. 757-760. Zbl0436.47027
  2. [2] G. Da Prato - P. Grisvard, Equations d'évolution abstraites non linéaires de type parabolique, Ann. Mat. Pura Appl., (IV), 120 (1979), pp. 329-396. Zbl0471.35036MR551075
  3. [3] G. Da Prato - P. Grisvard, Maximal regularity for evolution equations by interpolation and extrapolation, Preprint (1982). Zbl0593.47041MR757990
  4. [4] P. De Mottoni - A. Schiaffino - A. Tesei, Attractivity properties of non-negative solutions for a class of nonlinear degenerate parabolic problems, Ann. Mat. Pura Appl., (IV), in press. Zbl0556.35083
  5. [5] P. De Mottoni - G. Talenti - A. Tesei, Stability results for a class of nonlinear parabolic equations, Ann. Mat. Pura Appl., (IV), 115 (1977), pp. 295-310. Zbl0377.35039MR509750
  6. [6] K. Kirchgässner - J. Scheurle, Bifurcation, in: Dynamical systems: An international symposium, Vol. I, New York, Academic Press, 1967. MR601786
  7. [7] A. Lunardi, Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic equations, Math. Nachr., in press. Zbl0568.47035MR809327
  8. [8] M. Potier-Ferry, The linearization principle for the stability of solutions of quasilinear parabolic equations, I, Arch. Rational Mech. Anal., 77 (1981), pp. 301-320. Zbl0497.35006MR642550
  9. [9] E. Sinestrari, On the abstract Cauchy problem of parabolic type in spaces of continuous functions, J. Math. Anal. Appl., in press. Zbl0589.47042MR786012
  10. [10] H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators, Trans. Am. Math. Soc., 199 (1974), pp. 141-162. Zbl0264.35043MR358067
  11. [11] H.B. Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Am. Math. Soc., 259 (1980), pp. 299-310. Zbl0451.35033MR561838
  12. [12] H. Triebel, Interpolation theory, function spaces, differential operators, Amsterdam, North-Holland, 1978. Zbl0387.46032MR503903

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.