On relatively bounded perturbations of linear C 0 -semigroups

W. Desch; W. Schappacher

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 2, page 327-341
  • ISSN: 0391-173X

How to cite

top

Desch, W., and Schappacher, W.. "On relatively bounded perturbations of linear $C_0$-semigroups." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.2 (1984): 327-341. <http://eudml.org/doc/83934>.

@article{Desch1984,
author = {Desch, W., Schappacher, W.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {linear abstract Cauchy problem; -semigroup; relative boundedness; ultimately differentiable; semigroup settings for functional differential equations; abstract Volterra integrodifferential equations},
language = {eng},
number = {2},
pages = {327-341},
publisher = {Scuola normale superiore},
title = {On relatively bounded perturbations of linear $C_0$-semigroups},
url = {http://eudml.org/doc/83934},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Desch, W.
AU - Schappacher, W.
TI - On relatively bounded perturbations of linear $C_0$-semigroups
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 2
SP - 327
EP - 341
LA - eng
KW - linear abstract Cauchy problem; -semigroup; relative boundedness; ultimately differentiable; semigroup settings for functional differential equations; abstract Volterra integrodifferential equations
UR - http://eudml.org/doc/83934
ER -

References

top
  1. [1] J. Ball, Strongly continuous semigroups, weak solutions and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), pp. 370-373. Zbl0353.47017MR442748
  2. [2] H. Brezis, Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, North Holland (1973). Zbl0252.47055
  3. [3] G. Chen - R. Grimmer, Semigroups and integral equations, J. Integral Equations, 2 (1980), pp. 133-154. Zbl0449.45007MR572484
  4. [4] G. Da Prato - P. Grisvard, Equations d'evolution abstraites non lineaires de type parabolique, Annali Mat. Pura ed Appl., 70 (1979), pp. 329-396. Zbl0471.35036MR551075
  5. [5] M.C. Delfour, The largest class of hereditary systems defining a C0-semigroup on the product space, Canad. J. Math., 32 (1980), pp. 969-978. Zbl0448.34074MR590659
  6. [6] P. Hess, Zur Störungstheorie linearer Operatoren: Relative Beschränktheit und relative Kompaktheit von Operatoren in Banachräumen, Comm. Math. Helv., 44 (1969), pp. 245-248. Zbl0181.13705MR246156
  7. [7] F. Kappel - W. Schappacher, Nonlinear functional differential equations and abstract integral equations, Proc. Royal Soc. Edinburgh, 84A (1979), pp. 71-91. Zbl0455.34057MR549872
  8. [8] T. Kato, Perturbation Theory for Linear Operators, Springer (1976). Zbl0342.47009MR407617
  9. [9] K. Kunisch and W. Schappacher, Necessary conditions for partial differential equations with delay to generate C0-semigroups, J. Differential Equations, 50 (1983), pp. 49-79. Zbl0533.35082MR717868
  10. [10] R. Miller, Volterra integral equations in a Banach space, Funkcial. Ekvac., 18 (1975), pp. 163-193. Zbl0326.45007MR410312
  11. [11] J. Zabczyk, A semigroup approach to boundary value control, in Proc. of the 2nd IFAC Symposium on Control of distributed parameter systems (S. Banks, A. Pritchard eds.), pp. 99-107. Zbl0398.93028MR534864
  12. [12] J. Zabczyk, On decomposition of generators, SIAM. J. Control and Optimization, 16 (1978), pp. 523-534. Zbl0393.93023MR512915

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.