Harmonic and analytic functions admitting a distribution boundary value

Emil J. Straube

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)

  • Volume: 11, Issue: 4, page 559-591
  • ISSN: 0391-173X

How to cite

top

Straube, Emil J.. "Harmonic and analytic functions admitting a distribution boundary value." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.4 (1984): 559-591. <http://eudml.org/doc/83947>.

@article{Straube1984,
author = {Straube, Emil J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {distribution boundary value; harmonic functions; Sobolev space; Poisson integral; analytic functions; Szegö and Bergman projections; regularity},
language = {eng},
number = {4},
pages = {559-591},
publisher = {Scuola normale superiore},
title = {Harmonic and analytic functions admitting a distribution boundary value},
url = {http://eudml.org/doc/83947},
volume = {11},
year = {1984},
}

TY - JOUR
AU - Straube, Emil J.
TI - Harmonic and analytic functions admitting a distribution boundary value
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 4
SP - 559
EP - 591
LA - eng
KW - distribution boundary value; harmonic functions; Sobolev space; Poisson integral; analytic functions; Szegö and Bergman projections; regularity
UR - http://eudml.org/doc/83947
ER -

References

top
  1. [1] D. Barrett, Regularity of the Bergman Projection on Domains with Transverse Symmetries, Math. Ann., 258 (1982), pp. 441-446. Zbl0486.32015MR650948
  2. [2] S. Bell, Biholomorphic Mappings and the ∂-problem, Ann. of Math., 114 (1981), pp. 103-113. Zbl0423.32009
  3. [3] S. Bell, A Representation Theorem in Strictly Pseudoconvex Domains, Illinois J. Math., 26, No. 1 (1982), pp. 19-26. Zbl0475.32004MR638551
  4. [4] S. Bell, A Sobolev Inequality for Pluriharmonic Functions, Proc. Amer. Math. Soc., 85, No. 3 (1982), pp. 350-352. Zbl0496.32011MR656100
  5. [5] S. Bell, A Duality Theorem for Harmonic Functions, Michigan Math. J., 29 (1982), pp. 123-128. Zbl0482.31004MR646379
  6. [6] S. Bell - D. Catlin, Boundary Regularity of Proper Holmorphic Mappings, Duke Math. J., 49 (1982), pp. 385-396. Zbl0475.32011MR659947
  7. [7] S. Bell - H. Boas, Regularity of the Bergman Projection in Weakly Pseudoconvex Domains, Math. Ann., 257 (1981), pp. 23-30. Zbl0451.32017MR630644
  8. [8] S. Bell - H. Boas, Regularity of the Bergman Projection and Duality of Function Spaces, Math. Ann.267 (1984). 473-478. Zbl0536.32010MR742893
  9. [9] H. Boas, Regularity of the Szegö Projection in Weakly Pseudoconvex Domains, Indiana Univ. Math. J., in print. Zbl0555.32014MR773403
  10. [10] G. Khenkin - E. Chirka, Boundary Properties of Holomorphic Functions of Several Complex Variables, J. Soviet Math., 5 (1976), pp. 612-687. Zbl0375.32005
  11. [11] H. Komatsu, Projective and Injective Limits of Weakly Compact Sequences of Locally Convex Spaces, J. Math. Soc. Japan, 19, No. 3 (1967), pp. 366-383. Zbl0168.10603MR217557
  12. [12] G. Komatsu, Boundedness of the Bergman Projector and Bells's Duality Theorem, Tôhoku Math. J.36 (1984), 453-467. Zbl0533.32003MR756028
  13. [13] B. Korenblum, A. Beurling-TypeTheorem, Acta Math., 138 (1977), pp. 265-293. Zbl0354.30024MR447584
  14. [14] S. Krantz, Function Theory of Several Complex Variables, Wiley-Interscience, Pure and Appl. Math. Series, 1982. Zbl0471.32008MR635928
  15. [15] J. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications I, Grundlehren Math. Wiss., Band 181, Springer, 1972. Zbl0223.35039
  16. [16] J. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications III, Grundlehren Math. Wiss., Band 183, Springer, 1973. Zbl0251.35001
  17. [17] S Pinčuk, Bogoljubov's Theorem on the Edge of the Wedge for Generic Manifolds, Math. USSR-Sb., 23, No. 3 (1974), pp. 441-455. Zbl0313.32016
  18. [18] S. Pin, A. Boundary Uniqueness Theorem for Holomorphic Functions of Several Complex Variables, Math. Notes, 15 (1974), pp. 116-120. Zbl0292.32002MR350065
  19. [19] L. Schwartz, Théorie des distributions, Hermann, Paris, 1978. Zbl0399.46028MR209834
  20. [20] E. Straube, CR-Distributions and Analytic Continuation at Generating Edges, Math. Z., in print Zbl0554.32013MR776539
  21. [21] F. Tréves, Topological Vector Spaces, Distributions and Kernels, Academic Press, Pure and Appl. Math., 25 (1967). Zbl0171.10402MR225131
  22. [22] B. Weinstock, An Approximation Theorem for ∂-closed Forms of Type (n, n - 1), Proc. Amer. Math. Soc., 26, No. 4 (1970), pp. 625-628. Zbl0208.12902
  23. [23] J. Polking - R. Wells Jr., Boundary Values of Dolbeault Cohomology Classes and a Generalized Bochner-Hartogs Theorem, Abh. Math. Sem. Univ. Hamburg, 47 (1978), pp. 3-24. Zbl0379.32019MR504111

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.