Harmonic and analytic functions admitting a distribution boundary value
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1984)
- Volume: 11, Issue: 4, page 559-591
- ISSN: 0391-173X
Access Full Article
topHow to cite
topStraube, Emil J.. "Harmonic and analytic functions admitting a distribution boundary value." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 11.4 (1984): 559-591. <http://eudml.org/doc/83947>.
@article{Straube1984,
author = {Straube, Emil J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {distribution boundary value; harmonic functions; Sobolev space; Poisson integral; analytic functions; Szegö and Bergman projections; regularity},
language = {eng},
number = {4},
pages = {559-591},
publisher = {Scuola normale superiore},
title = {Harmonic and analytic functions admitting a distribution boundary value},
url = {http://eudml.org/doc/83947},
volume = {11},
year = {1984},
}
TY - JOUR
AU - Straube, Emil J.
TI - Harmonic and analytic functions admitting a distribution boundary value
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1984
PB - Scuola normale superiore
VL - 11
IS - 4
SP - 559
EP - 591
LA - eng
KW - distribution boundary value; harmonic functions; Sobolev space; Poisson integral; analytic functions; Szegö and Bergman projections; regularity
UR - http://eudml.org/doc/83947
ER -
References
top- [1] D. Barrett, Regularity of the Bergman Projection on Domains with Transverse Symmetries, Math. Ann., 258 (1982), pp. 441-446. Zbl0486.32015MR650948
- [2] S. Bell, Biholomorphic Mappings and the ∂-problem, Ann. of Math., 114 (1981), pp. 103-113. Zbl0423.32009
- [3] S. Bell, A Representation Theorem in Strictly Pseudoconvex Domains, Illinois J. Math., 26, No. 1 (1982), pp. 19-26. Zbl0475.32004MR638551
- [4] S. Bell, A Sobolev Inequality for Pluriharmonic Functions, Proc. Amer. Math. Soc., 85, No. 3 (1982), pp. 350-352. Zbl0496.32011MR656100
- [5] S. Bell, A Duality Theorem for Harmonic Functions, Michigan Math. J., 29 (1982), pp. 123-128. Zbl0482.31004MR646379
- [6] S. Bell - D. Catlin, Boundary Regularity of Proper Holmorphic Mappings, Duke Math. J., 49 (1982), pp. 385-396. Zbl0475.32011MR659947
- [7] S. Bell - H. Boas, Regularity of the Bergman Projection in Weakly Pseudoconvex Domains, Math. Ann., 257 (1981), pp. 23-30. Zbl0451.32017MR630644
- [8] S. Bell - H. Boas, Regularity of the Bergman Projection and Duality of Function Spaces, Math. Ann.267 (1984). 473-478. Zbl0536.32010MR742893
- [9] H. Boas, Regularity of the Szegö Projection in Weakly Pseudoconvex Domains, Indiana Univ. Math. J., in print. Zbl0555.32014MR773403
- [10] G. Khenkin - E. Chirka, Boundary Properties of Holomorphic Functions of Several Complex Variables, J. Soviet Math., 5 (1976), pp. 612-687. Zbl0375.32005
- [11] H. Komatsu, Projective and Injective Limits of Weakly Compact Sequences of Locally Convex Spaces, J. Math. Soc. Japan, 19, No. 3 (1967), pp. 366-383. Zbl0168.10603MR217557
- [12] G. Komatsu, Boundedness of the Bergman Projector and Bells's Duality Theorem, Tôhoku Math. J.36 (1984), 453-467. Zbl0533.32003MR756028
- [13] B. Korenblum, A. Beurling-TypeTheorem, Acta Math., 138 (1977), pp. 265-293. Zbl0354.30024MR447584
- [14] S. Krantz, Function Theory of Several Complex Variables, Wiley-Interscience, Pure and Appl. Math. Series, 1982. Zbl0471.32008MR635928
- [15] J. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications I, Grundlehren Math. Wiss., Band 181, Springer, 1972. Zbl0223.35039
- [16] J. Lions - E. Magenes, Nonhomogeneous Boundary Value Problems and Applications III, Grundlehren Math. Wiss., Band 183, Springer, 1973. Zbl0251.35001
- [17] S Pinčuk, Bogoljubov's Theorem on the Edge of the Wedge for Generic Manifolds, Math. USSR-Sb., 23, No. 3 (1974), pp. 441-455. Zbl0313.32016
- [18] S. Pin, A. Boundary Uniqueness Theorem for Holomorphic Functions of Several Complex Variables, Math. Notes, 15 (1974), pp. 116-120. Zbl0292.32002MR350065
- [19] L. Schwartz, Théorie des distributions, Hermann, Paris, 1978. Zbl0399.46028MR209834
- [20] E. Straube, CR-Distributions and Analytic Continuation at Generating Edges, Math. Z., in print Zbl0554.32013MR776539
- [21] F. Tréves, Topological Vector Spaces, Distributions and Kernels, Academic Press, Pure and Appl. Math., 25 (1967). Zbl0171.10402MR225131
- [22] B. Weinstock, An Approximation Theorem for ∂-closed Forms of Type (n, n - 1), Proc. Amer. Math. Soc., 26, No. 4 (1970), pp. 625-628. Zbl0208.12902
- [23] J. Polking - R. Wells Jr., Boundary Values of Dolbeault Cohomology Classes and a Generalized Bochner-Hartogs Theorem, Abh. Math. Sem. Univ. Hamburg, 47 (1978), pp. 3-24. Zbl0379.32019MR504111
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.