Parametrix for a characteristic Cauchy problem
A. Bove; J. E. Lewis; C. Parenti
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)
- Volume: 12, Issue: 1, page 1-42
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBove, A., Lewis, J. E., and Parenti, C.. "Parametrix for a characteristic Cauchy problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.1 (1985): 1-42. <http://eudml.org/doc/83951>.
@article{Bove1985,
author = {Bove, A., Lewis, J. E., Parenti, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {second order differential operator; well posed Cauchy problem; parametrix},
language = {eng},
number = {1},
pages = {1-42},
publisher = {Scuola normale superiore},
title = {Parametrix for a characteristic Cauchy problem},
url = {http://eudml.org/doc/83951},
volume = {12},
year = {1985},
}
TY - JOUR
AU - Bove, A.
AU - Lewis, J. E.
AU - Parenti, C.
TI - Parametrix for a characteristic Cauchy problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 1
SP - 1
EP - 42
LA - eng
KW - second order differential operator; well posed Cauchy problem; parametrix
UR - http://eudml.org/doc/83951
ER -
References
top- [1] S. Alinhac, Solution explicite du problème de Cauchy pour des opérateurs effectivement hyperboliques, Duke Math. J., 45 (1978), pp. 225-258. Zbl0398.35061MR481678
- [2] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math., 27 (1974), pp. 585-639. Zbl0294.35020MR370271
- [3] J.J. Duistermaat, Fourier Integral Operators, Lecture Notes Courant Institute NYU, 1973. Zbl0272.47028MR451313
- [4] J.J. Duistermaat - L. Hörmander, Fourier Integral Operators II, Acta Math., 128 (1972), pp. 183-269. Zbl0232.47055MR388464
- [5] L. Hörmander, Fourier Integral Operators I, Acta Math., 127 (1971), pp. 79-183. Zbl0212.46601MR388463
- [6] W. Magnus - F. Oberhettinger - R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966. Zbl0143.08502MR232968
- [7] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, 2nd ed., 1944. Zbl0063.08184MR10746
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.