Parametrix for a characteristic Cauchy problem

A. Bove; J. E. Lewis; C. Parenti

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 1, page 1-42
  • ISSN: 0391-173X

How to cite

top

Bove, A., Lewis, J. E., and Parenti, C.. "Parametrix for a characteristic Cauchy problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.1 (1985): 1-42. <http://eudml.org/doc/83951>.

@article{Bove1985,
author = {Bove, A., Lewis, J. E., Parenti, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {second order differential operator; well posed Cauchy problem; parametrix},
language = {eng},
number = {1},
pages = {1-42},
publisher = {Scuola normale superiore},
title = {Parametrix for a characteristic Cauchy problem},
url = {http://eudml.org/doc/83951},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Bove, A.
AU - Lewis, J. E.
AU - Parenti, C.
TI - Parametrix for a characteristic Cauchy problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 1
SP - 1
EP - 42
LA - eng
KW - second order differential operator; well posed Cauchy problem; parametrix
UR - http://eudml.org/doc/83951
ER -

References

top
  1. [1] S. Alinhac, Solution explicite du problème de Cauchy pour des opérateurs effectivement hyperboliques, Duke Math. J., 45 (1978), pp. 225-258. Zbl0398.35061MR481678
  2. [2] L. Boutet De Monvel, Hypoelliptic operators with double characteristics and related pseudo-differential operators, Comm. Pure Appl. Math., 27 (1974), pp. 585-639. Zbl0294.35020MR370271
  3. [3] J.J. Duistermaat, Fourier Integral Operators, Lecture Notes Courant Institute NYU, 1973. Zbl0272.47028MR451313
  4. [4] J.J. Duistermaat - L. Hörmander, Fourier Integral Operators II, Acta Math., 128 (1972), pp. 183-269. Zbl0232.47055MR388464
  5. [5] L. Hörmander, Fourier Integral Operators I, Acta Math., 127 (1971), pp. 79-183. Zbl0212.46601MR388463
  6. [6] W. Magnus - F. Oberhettinger - R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd ed., Springer, 1966. Zbl0143.08502MR232968
  7. [7] G.N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, 2nd ed., 1944. Zbl0063.08184MR10746

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.