Local holomorphic extendability and non-extendability of -functions on smooth boundaries
John Erik Fornæss; Claudio Rea
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)
- Volume: 12, Issue: 3, page 491-502
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFornæss, John Erik, and Rea, Claudio. "Local holomorphic extendability and non-extendability of $CR$-functions on smooth boundaries." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.3 (1985): 491-502. <http://eudml.org/doc/83964>.
@article{Fornæss1985,
author = {Fornæss, John Erik, Rea, Claudio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {local extendability of CR-functions; rays condition; local peak point},
language = {eng},
number = {3},
pages = {491-502},
publisher = {Scuola normale superiore},
title = {Local holomorphic extendability and non-extendability of $CR$-functions on smooth boundaries},
url = {http://eudml.org/doc/83964},
volume = {12},
year = {1985},
}
TY - JOUR
AU - Fornæss, John Erik
AU - Rea, Claudio
TI - Local holomorphic extendability and non-extendability of $CR$-functions on smooth boundaries
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 3
SP - 491
EP - 502
LA - eng
KW - local extendability of CR-functions; rays condition; local peak point
UR - http://eudml.org/doc/83964
ER -
References
top- [1] M.S. Baouendi - F. Treves, About the holomorphic extension fo CR-functions on real hypersurfaces in complex space, Duke Math. J., 51 (1984), pp. 77-107. Zbl0564.32011MR744289
- [2] E. Bedford, Local and global envelopes of holomorphy of domains in C2. (Preprint). Zbl0599.32010
- [3] E. Bedford - J.E. Fornæss, Local extension of CR-functions from weakly pseudoconvex boundaries, Michigan Math. J., 25 (1978) pp. 259-262. Zbl0401.32007MR512898
- [4] E. Bedford and J.E. Fornæss, A construction of peak functions on weakly pseudoconvex domains, Ann. of Math., 107 (1978), pp. 555-568. Zbl0392.32004MR492400
- [5] C.O. Kiselman, On entire functions of exponential type and indicators of analytic functionals, Acta Math.117, (1967), pp. 1-35. Zbl0152.07602MR210940
- [6] J.J. Kohn - L. Nirenberg, A pseudoconvex demain not admitting a holomorphic support function, Math. Ann.201 (1973), pp. 265-268. Zbl0248.32013MR330513
- [7] E.E. Levi, Sulle ipersurperfici dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse, Ann. Mat. Pura Appl., 18, s. III (1911), pp. 69-79. Zbl42.0449.02JFM42.0449.02
- [8] H. Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math., 74 (1956), pp. 514-522. Zbl0074.06204MR81952
- [9] C. Rea, Extension holomorphe bilatérale des fonctions de Cauchy-Riemann données sur une hypersurface différentiable de C2, C. R. Acad. Sc. Paris, Sér. A, 294, (1982), pp. 577-579. Zbl0496.32013MR663083
- [10] C. Rea, The Cauchy problem for the ∂ operator, Boll. UMI (6), 1-A (1982), pp. 443-449. Zbl0525.32018
- [11] C. Rea, Prolongement holomorphe des fonctions CR, conditions suffisantes, C. R. Acad. Sc. Paris, 297 (1983), pp. 163-166. Zbl0568.32011MR725396
- [12] L.I. Ronkin, Introduction to the theory of entire functions of several variables, Tr. of Math. Monographs, 44, A.M.S. (1974). Zbl0286.32004MR346175
- [13] B. Stensønes- Henriksen, Ph. D. Thesis, Princeton University.
- [14] A. Bogges - J. Pitts, CR extension near a point of higher type, Duke Math. J., 52 (1985), pp. 67-102. Zbl0573.32019MR791293
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.