Finite rank, relatively bounded perturbations of semigroups generators

I. Lasiecka; R. Triggiani

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 4, page 641-668
  • ISSN: 0391-173X

How to cite

top

Lasiecka, I., and Triggiani, R.. "Finite rank, relatively bounded perturbations of semigroups generators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.4 (1985): 641-668. <http://eudml.org/doc/83969>.

@article{Lasiecka1985,
author = {Lasiecka, I., Triggiani, R.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {infinitesimal generator; strongly-continuous semigroup; hyperbolic equations in boundary feedback closed loop form},
language = {eng},
number = {4},
pages = {641-668},
publisher = {Scuola normale superiore},
title = {Finite rank, relatively bounded perturbations of semigroups generators},
url = {http://eudml.org/doc/83969},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Lasiecka, I.
AU - Triggiani, R.
TI - Finite rank, relatively bounded perturbations of semigroups generators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 4
SP - 641
EP - 668
LA - eng
KW - infinitesimal generator; strongly-continuous semigroup; hyperbolic equations in boundary feedback closed loop form
UR - http://eudml.org/doc/83969
ER -

References

top
  1. [B-N1] P. Butzer - R. Nessel, Fourier Analysis and Approximations, Vol. 1, Academic Press, New York, 1971. Zbl0217.42603MR510857
  2. [D1] G. Doetsch, Introduction to the theory and Application of the Laplace transformation, Springer-verlag, New York, Heidelberg, Berlin, 1970. Zbl0278.44001MR344810
  3. [D-S1] W. Desch - W. Schappacher, On relatively bounded perturbations of linear C0-semigroups, preprint May 1983, Institute für Mathematik, Technische UniversitätGraz, Austria. 
  4. [F1] H.O. Fattorini, The Cauchy Problem, Encyclopedia Math. Appl., Addison-Wesley, 1983. MR692768
  5. [H-P1] E. Hille and R. Phillips, Functional Analysis and semigroups, Amer. Math. Soc., Providence, R.I., 1957. Zbl0078.10004MR89373
  6. [K1] T. Kato, Perturbation Theory of Linear Operators, Springer-Verlag, 1966. Zbl0148.12601MR203473
  7. [K2] H.O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., vol. XXIII (1970), pp. 277-298. Zbl0188.41102MR437941
  8. [M1] V.P. Mikhailov, Partial differential equations, MIR Publishers, Moscow (English translation), 1978. Zbl0388.35002MR498162
  9. [P1] A. Pazy, Semigroups of Operators and Applications to Partial Differential Equations, Lect. Notes # 10, Math. Dept. Univ. of Maryland, College Park (1974). MR512912
  10. [L-T1] I. Lasiecka - R. Triggiani, A cosine operator approach to modelling L2(O, T; L2(Γ))-input hyperbolic equations, Appl. Math. Optim., 7 (1981), pp. 35-93. Zbl0473.35022
  11. [L-T2] I. Lasiecka - R. Triggiani, Hyperbolic equations with Dirichlet boundary feedback via position vector: regularity and almost periodic stabilization, I, Appl. Math. Optim., 8 (1981), pp. 1-37. Zbl0479.93052MR646502
  12. [L-T3] I. Lasiecka - R. Triggiani, Dirichlet boundary stabilization of the wave equation with damping feedback of finite range, J. Math. Anal. Appl., 97 (1983), pp. 112-130. MR721233
  13. [L-T4] I. Lasiecka - R. Triggiani, Feedback semigroups and cosine operators for boundary feedback parabolic and hyperbolic equations, J. Differential Equations, 47 (1983), pp. 246-272. MR688105
  14. [L-T5] I. Lasiecka - R. Triggiani, Nondissipative boundary stabilization of the wave equation via boundary observations, J. Math. Pures Appl., 63 (1984), pp. 59-80. MR776911
  15. [L-T6] I. Lasiecka - R. Triggiani, Regularity of hyperbolic equations under L2(O, T; L2(Γ))-Dirichtet boundary terms, Appl. Math. Optim., 40 (1983), pp. 275-286. Zbl0526.35049
  16. [L-T7] I. Lasiecka - R. Triggiani, Hyperbolic equations with nonhomogeneous Neumann boundary terms. - I: Regularity. To appear. 
  17. [L-T8] I. Lasiecka R. Triggiani, Dirichlet boundary control problem for parabolic equations with quadratic cost: analyticity and Riccati's feedback synthesis, SIAM J. Control Optim., 24 (1983), pp. 41-67. Zbl0506.93036MR688439
  18. [L-T9[ I. Lasiecka - R. Triggiani, Finite rank, relatively bounded perturbations of semi-groups generators. Part II : spectrum and Riesz basis assignment with applications to feedback systems, Ann. Mat. Pura Appl. to appear. Zbl0623.47040
  19. [R1] J. Rauch, L2 is a continuable initial condition for Kreiss mixed problems, Comm. Pure Appl. Math., 25 (1972), pp. 265-285. Zbl0226.35056MR298232
  20. [T1] R. Triggiani, Well posedness and regularity of boundary feedback parabolic systems, J. Differential Equations, 36 (1980), pp. 347-362. Zbl0438.35042MR576155
  21. [T2[ R. Triggiani, Aε-bounded, finite rank perturbations of a s.c. group generators : counterexamples to generation and to another condition for well-posedness. Lecture Notes in Mathematics1076, Infinite dimensional systems, Proceedings, Retzholf (1983), Springer-Verlag (1984), pp. 227-253. Zbl0554.35008
  22. [Y1] K. Yosida, Functional Analysis, Springer-Verlag, 4th Edition, 1976. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.