Multiplicity- 2 structures on Castelnuovo surfaces

K. Hulek; C. Okonek; A. Van de Ven

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1986)

  • Volume: 13, Issue: 3, page 427-448
  • ISSN: 0391-173X

How to cite

top

Hulek, K., Okonek, C., and Van de Ven, A.. "Multiplicity-$2$ structures on Castelnuovo surfaces." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 13.3 (1986): 427-448. <http://eudml.org/doc/83986>.

@article{Hulek1986,
author = {Hulek, K., Okonek, C., Van de Ven, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Castelnuovo surface; maximal geometric genus; complete intersection},
language = {eng},
number = {3},
pages = {427-448},
publisher = {Scuola normale superiore},
title = {Multiplicity-$2$ structures on Castelnuovo surfaces},
url = {http://eudml.org/doc/83986},
volume = {13},
year = {1986},
}

TY - JOUR
AU - Hulek, K.
AU - Okonek, C.
AU - Van de Ven, A.
TI - Multiplicity-$2$ structures on Castelnuovo surfaces
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1986
PB - Scuola normale superiore
VL - 13
IS - 3
SP - 427
EP - 448
LA - eng
KW - Castelnuovo surface; maximal geometric genus; complete intersection
UR - http://eudml.org/doc/83986
ER -

References

top
  1. [1] W. Barth, Transplanting cohomology classes in complex projective space, Amer. J. Math., 92 (1970), pp. 951-967. Zbl0206.50001MR287032
  2. [2] PH. Ellia, Exemples de courbes de P3 à fibré normal semi-stable, stable, Math. Ann., 264 (1983), pp. 389-396. Zbl0519.14025MR714111
  3. [3] J. Harris, A bound on the geometric genus of projective varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Ser. 4, 8 (1981), pp. 35-68. Zbl0467.14005MR616900
  4. [4] R. Hartshorne, Stable reflexive sheaves, Math. Ann., 254 (1980), pp. 121-176. Zbl0431.14004MR597077
  5. [5] K. Hulek, The normal bundle of a curve on a quadric, Math. Ann., 258 (1981), pp. 201-206. Zbl0458.14011MR641825
  6. [6] K. Hulek - G. Sacchiero, On the normal bundle of elliptic space curves, Arch. Math., 40 (1983), pp. 61-68. Zbl0492.14013MR720894
  7. [7] K. Hulek - A. Van De Ven, The Horrocks-Mumford bundle and the Ferrand construction, Manuscripta Math., 50 (1985), pp. 313-335. Zbl0576.14017MR784147
  8. [8] C. Okonek, Moduli reflexiver Garben und Flächen von kleinem Grad in P4, Math. Z., 184 (1983), pp. 549-572. Zbl0524.14018MR719493
  9. [9] C. Okonek, Über 2-codimensionale Untermannigfaltigkeiten vom Grad 7 in P4 und P5, Math. Z., 187 (1984), pp. 209-219. Zbl0575.14030MR753433
  10. [10] C. Okonek, Flächen vom Grad 8 im P4, Math. Z, 191 (1986), pp. 207-223. Zbl0611.14032MR818665
  11. [11] C. Peskine - L. Szpiro, Liaison des variétés algébriques I, Invent. Math., 26 (1974), pp. 271-302. Zbl0298.14022MR364271
  12. [12] A.J. Sommese, Hyperplane sections of projective surfaces. I: The adjunction mapping, Duke Math. J., 46 (1979), pp. 377-401. Zbl0415.14019MR534057
  13. [13] G. Valla, On determinantal ideals which are set-theoretic complete intersections, Comp. Math., 42 (1981), pp. 3-11. Zbl0474.14034MR594479
  14. [14] G. Valla, On set-theoretic complete intersections. Complete intersections, LNM no. 1092, pp. 85-101, Springer (1984). Zbl0573.14019MR775878

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.