On stable solutions of quasilinear periodic-parabolic problems

E. N. Dancer; P. Hess

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 1, page 123-141
  • ISSN: 0391-173X

How to cite

top

Dancer, E. N., and Hess, P.. "On stable solutions of quasilinear periodic-parabolic problems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.1 (1987): 123-141. <http://eudml.org/doc/83995>.

@article{Dancer1987,
author = {Dancer, E. N., Hess, P.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {sub- and supersolutions; nonlinear semigroup; stable stationary solution; existence; stable T-periodic solutions; quasilinear second order parabolic equation},
language = {eng},
number = {1},
pages = {123-141},
publisher = {Scuola normale superiore},
title = {On stable solutions of quasilinear periodic-parabolic problems},
url = {http://eudml.org/doc/83995},
volume = {14},
year = {1987},
}

TY - JOUR
AU - Dancer, E. N.
AU - Hess, P.
TI - On stable solutions of quasilinear periodic-parabolic problems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 1
SP - 123
EP - 141
LA - eng
KW - sub- and supersolutions; nonlinear semigroup; stable stationary solution; existence; stable T-periodic solutions; quasilinear second order parabolic equation
UR - http://eudml.org/doc/83995
ER -

References

top
  1. [1] H. Amann, Existence and multiplicity theorems for semilinear elliptic boundary value problems, Math. Z.150 (1976), pp. 281-295. Zbl0331.35026MR430526
  2. [2] H. Amann, Periodic solutions of semilinear parabolic equations, in Nonlinear Anal., eds. Cesari, Kannan and Weinberger, Academic Press, New York, 1978, pp. 1-29. Zbl0464.35050MR499089
  3. [3] A. Beltramo, P. Hess, On the principal eigenvalue of a periodic-parabolic operator, Comm. P.D.E.9 (1984), pp. 919-941. Zbl0563.35033MR749652
  4. [4] A. Castro A.C. Lazer, Results on periodic solutions of parabolic equations suggested by elliptic theory, Boll. Un. Mat. Ital. (6) I-B (1982), pp. 1089-1104. Zbl0501.35005MR683495
  5. [5] W.H. Fleming, A selection-migration model in population genetics, J. Math. Biol., 2 (1975), pp. 219-234. Zbl0325.92009MR403720
  6. [6] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, 1969. Zbl0224.35002MR445088
  7. [7] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math.840, Springer-Verlag, 1981. Zbl0456.35001MR610244
  8. [8] P. Hess, On positive solutions of semilinear-parabolic problems, in Lecture Notes in Math., Springer, 1076 (1984), pp. 101-114. Zbl0556.35066MR763357
  9. [9] P. Hess, Spatial homogeneity of stable solutions of some periodic-parabolic problems with Neumann boundary conditions, J. Differential Equations68 (1987), pp. 320-331. Zbl0619.35059MR891331
  10. [10] H. Hofer, Existence and multiplicity result for a class of second order elliptic equations, Proc. Roy. Soc. Edinburgh, 88A (1981), pp. 83-92. Zbl0468.35042MR611302
  11. [11] O.A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc. Transl. of Math. Monographs23, 1968. Zbl0174.15403MR241822
  12. [12] A.C. Lazer, Some remarks on periodic solutions of parabolic differential equations, in "Dynamical systems II", eds. Bednarek and Cesari, Academic Press, New York1982, pp. 227-346. Zbl0551.35044MR703697
  13. [13] H. Matano, Asymptotic behaviour and stability of solutions of semilinear diffusion equations, Publ. Res. Inst. Math. Sci., Kyoto Univ.15 (1979), pp. 401-454. Zbl0445.35063MR555661
  14. [14] H. Matano, Existence of nontrivial unstable sets for equilibriums of strongly order-preserving systems, J. Fac. Sci. Univ. Kyoto30 (1984), pp. 645-673. Zbl0545.35042MR731522
  15. [15] H. Matano, L∞ stability of an exponentially decreasing solution of the problem Δ u + f(x, u) = 0 in Rn, to appear in Japan J. Appl. Math. Zbl0594.35053
  16. [16] H. Matano, M. Mimura, Patterm formation in competition-diffusion systems in nonconvex domains, Publ. Res. Inst. Math. Sci., Kyoto Univ.19 (1983), pp. 1049-1079. Zbl0548.35063MR723460
  17. [17] M.H. Protter, H.F. Weinberger, Maximum principles in differential equations, Prentice-Hall, pp. 1967. Zbl0153.13602MR219861
  18. [18] D.H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J.21 (1972), pp. 979-1000. Zbl0223.35038MR299921
  19. [19] J.C. Saut, B. Scheurer, Remarks on a nonlinear equation arising in population genetics, Comm. P.D.E.3 (1978), pp. 907-931. Zbl0421.35072MR507122
  20. [20] S. Senn, On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an application to population genetics, Comm. P.D.E.8 (1983), pp. 1199-1228. Zbl0526.35067MR709161
  21. [21] F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in Lp, Indiana Univ. Math. J.29 (1980), pp. 79-102. Zbl0443.35034MR554819

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.