Boundedness of solutions via the twist-theorem

R. Dieckerhoff; E. Zehnder

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)

  • Volume: 14, Issue: 1, page 79-95
  • ISSN: 0391-173X

How to cite

top

Dieckerhoff, R., and Zehnder, E.. "Boundedness of solutions via the twist-theorem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.1 (1987): 79-95. <http://eudml.org/doc/84000>.

@article{Dieckerhoff1987,
author = {Dieckerhoff, R., Zehnder, E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {boundedness; twist-theorem},
language = {eng},
number = {1},
pages = {79-95},
publisher = {Scuola normale superiore},
title = {Boundedness of solutions via the twist-theorem},
url = {http://eudml.org/doc/84000},
volume = {14},
year = {1987},
}

TY - JOUR
AU - Dieckerhoff, R.
AU - Zehnder, E.
TI - Boundedness of solutions via the twist-theorem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 1
SP - 79
EP - 95
LA - eng
KW - boundedness; twist-theorem
UR - http://eudml.org/doc/84000
ER -

References

top
  1. [1] G.R. Morris, A case of boundedness in Littlewood's problem on oscillatory differential equations, Bull. Austral. Math. Soc., 14 (1976), pp. 71-93. Zbl0324.34030MR402198
  2. [2] J.E. Littlewood, Some problems in real and complex analysis, (Heath, Lexington, Mass.1968). Zbl0185.11502MR244463
  3. [3] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1962), pp. 1-20. Zbl0107.29301MR147741
  4. [4] J. Moser, Stable and random motions in dynamical systems, Ann. of Math. Studies77, Princeton, N.J. (1973). Zbl0271.70009MR442980
  5. [5] P. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations26, (1977), pp. 37-53. Zbl0365.34032MR477242
  6. [6] H. Jacobowitz, Periodic solutions of x + f (t, x) = 0 via the Poincaré-Birkoff fixed points theorem, J. Differential Equations20, (1976), pp. 37-53. Zbl0285.34028MR393673
  7. [7] K. Sitnikov, Existence of oscillating motions for three-body problem, Dokl. Akad. Nauk., SSSR., 133, 2, (1960), pp. 303-306. Zbl0108.18603MR127389
  8. [8] V.M. Alekseev, Quasirandom dynamical systems, I, II, III, Math. USSR-Sb., 5, (1968), pp. 73-128; 6, (1968), pp. 505-560; 7, (1969), pp. 1-43. Zbl0198.56903MR249754
  9. [9] G.D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc.14, (1913), pp. 14-22. Zbl44.0761.01JFM44.0761.01
  10. [10] G.D. Birkhoff, An extension of Poincaré's last geometric theorem, Acta Math.47, (1925). Zbl52.0573.02JFM52.0573.02
  11. [11] H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Preprint, Mainz (1982). Zbl0531.58041MR730294
  12. [12] M. Herman, Démonstration du théorème des courbes translatées de nombre de rotation de type constant, manuscript, Paris (1981). 
  13. [13] A. Bahri - H. Beresticky, Forced Vibrations of Superquadratic Hamiltonian Systems, Acta. Math., 152, (1984), pp. 143-197. Zbl0592.70027MR741053
  14. [14] M. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1, Astérisque (1983), pp. 103-104, Vol. 2. Astérisque (1986), pp. 144. Zbl0613.58021MR499079
  15. [15] E. Zehnder, Periodic solutions of Hamiltonian equations, Lecture Notes in Math., Springer, 1031, (1983), pp. 172-213. Zbl0522.58015MR733649
  16. [16] J. Pöschel, Integrability of Hamiltonian Systems on Cantor Sets, Comm. Pure Appl. Math.36, (1982), pp. 653-695. Zbl0542.58015MR668410
  17. [17] C.V. Coffmann - D.F. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math.71, (1967), pp. 385-392. Zbl0153.40204MR227494

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.