Boundedness of solutions via the twist-theorem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)
- Volume: 14, Issue: 1, page 79-95
- ISSN: 0391-173X
Access Full Article
topHow to cite
topDieckerhoff, R., and Zehnder, E.. "Boundedness of solutions via the twist-theorem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.1 (1987): 79-95. <http://eudml.org/doc/84000>.
@article{Dieckerhoff1987,
author = {Dieckerhoff, R., Zehnder, E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {boundedness; twist-theorem},
language = {eng},
number = {1},
pages = {79-95},
publisher = {Scuola normale superiore},
title = {Boundedness of solutions via the twist-theorem},
url = {http://eudml.org/doc/84000},
volume = {14},
year = {1987},
}
TY - JOUR
AU - Dieckerhoff, R.
AU - Zehnder, E.
TI - Boundedness of solutions via the twist-theorem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 1
SP - 79
EP - 95
LA - eng
KW - boundedness; twist-theorem
UR - http://eudml.org/doc/84000
ER -
References
top- [1] G.R. Morris, A case of boundedness in Littlewood's problem on oscillatory differential equations, Bull. Austral. Math. Soc., 14 (1976), pp. 71-93. Zbl0324.34030MR402198
- [2] J.E. Littlewood, Some problems in real and complex analysis, (Heath, Lexington, Mass.1968). Zbl0185.11502MR244463
- [3] J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II, (1962), pp. 1-20. Zbl0107.29301MR147741
- [4] J. Moser, Stable and random motions in dynamical systems, Ann. of Math. Studies77, Princeton, N.J. (1973). Zbl0271.70009MR442980
- [5] P. Hartman, On boundary value problems for superlinear second order differential equations, J. Differential Equations26, (1977), pp. 37-53. Zbl0365.34032MR477242
- [6] H. Jacobowitz, Periodic solutions of x + f (t, x) = 0 via the Poincaré-Birkoff fixed points theorem, J. Differential Equations20, (1976), pp. 37-53. Zbl0285.34028MR393673
- [7] K. Sitnikov, Existence of oscillating motions for three-body problem, Dokl. Akad. Nauk., SSSR., 133, 2, (1960), pp. 303-306. Zbl0108.18603MR127389
- [8] V.M. Alekseev, Quasirandom dynamical systems, I, II, III, Math. USSR-Sb., 5, (1968), pp. 73-128; 6, (1968), pp. 505-560; 7, (1969), pp. 1-43. Zbl0198.56903MR249754
- [9] G.D. Birkhoff, Proof of Poincaré's geometric theorem, Trans. Amer. Math. Soc.14, (1913), pp. 14-22. Zbl44.0761.01JFM44.0761.01
- [10] G.D. Birkhoff, An extension of Poincaré's last geometric theorem, Acta Math.47, (1925). Zbl52.0573.02JFM52.0573.02
- [11] H. Rüssmann, On the existence of invariant curves of twist mappings of an annulus, Preprint, Mainz (1982). Zbl0531.58041MR730294
- [12] M. Herman, Démonstration du théorème des courbes translatées de nombre de rotation de type constant, manuscript, Paris (1981).
- [13] A. Bahri - H. Beresticky, Forced Vibrations of Superquadratic Hamiltonian Systems, Acta. Math., 152, (1984), pp. 143-197. Zbl0592.70027MR741053
- [14] M. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1, Astérisque (1983), pp. 103-104, Vol. 2. Astérisque (1986), pp. 144. Zbl0613.58021MR499079
- [15] E. Zehnder, Periodic solutions of Hamiltonian equations, Lecture Notes in Math., Springer, 1031, (1983), pp. 172-213. Zbl0522.58015MR733649
- [16] J. Pöschel, Integrability of Hamiltonian Systems on Cantor Sets, Comm. Pure Appl. Math.36, (1982), pp. 653-695. Zbl0542.58015MR668410
- [17] C.V. Coffmann - D.F. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math.71, (1967), pp. 385-392. Zbl0153.40204MR227494
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.