The arithmetic-geometric mean and its generalizations for noncommuting linear operators
Roger D. Nussbaum; Joel E. Cohen
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)
- Volume: 15, Issue: 2, page 239-308
- ISSN: 0391-173X
Access Full Article
topHow to cite
topNussbaum, Roger D., and Cohen, Joel E.. "The arithmetic-geometric mean and its generalizations for noncommuting linear operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.2 (1988): 239-308. <http://eudml.org/doc/84031>.
@article{Nussbaum1988,
author = {Nussbaum, Roger D., Cohen, Joel E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {operator means and their iterates; arithmetic-geometric mean},
language = {eng},
number = {2},
pages = {239-308},
publisher = {Scuola normale superiore},
title = {The arithmetic-geometric mean and its generalizations for noncommuting linear operators},
url = {http://eudml.org/doc/84031},
volume = {15},
year = {1988},
}
TY - JOUR
AU - Nussbaum, Roger D.
AU - Cohen, Joel E.
TI - The arithmetic-geometric mean and its generalizations for noncommuting linear operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 2
SP - 239
EP - 308
LA - eng
KW - operator means and their iterates; arithmetic-geometric mean
UR - http://eudml.org/doc/84031
ER -
References
top- [1] W.N. AndersonJr. - R.J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl.26 (1969), pp. 576-594. Zbl0177.04904MR242573
- [2] W.N. AndersonJr. - G.E. Trapp, Shorted operators II, SIAM J. Appl. Math.28 (1975), pp. 60-71. Zbl0295.47032MR356949
- [3] Tsuyoshi Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra and its Applications27 (1979), pp. 203-241. Zbl0495.15018MR535686
- [4] -, On the arithmetic-geometric-harmonic mean inequality for positive definite matrices, Linear Algebra and its Applications52-53 (1983), pp. 31-37. Zbl0516.15011MR709342
- [5] Tsuyoshi Ando - Fumio Kubo, Means of positive linear operators, Math. Ann.246 (1980), pp. 205-244. Zbl0412.47013MR563399
- [6] J. Arazy - T. Claesson - S. Janson - J. Peetre, Means and their iterations, in Proceedings of the Nineteenth Nordic Congress of Mathematicians, Reykjavik, 1984, pp. 191-212 (published by the Icelandic Math. Soc., 1985). Zbl0606.26007MR828035
- [7] R. Arens, The analytic-functional calculus in commutative topological algebras, Pac. J. Math.11 (1961), pp. 405-429. Zbl0109.34203MR140960
- [8] J. Bendat - S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc.79 (1955), pp. 58-71. Zbl0064.36901MR82655
- [9] G. Borchardt, Gesammelte Werke, Herausgegeben von G. Hettner, Reimer. Berlin, 1888. JFM20.0015.01
- [10] J.M. Borwein - P.B. Borwein, The arithmetic-geometric means and fast computation of elementary functions, SIAM Review26 (1984), pp. 351-366. Zbl0557.65009MR750454
- [11] D. Borwein - P.B. Borwein, A generalized arithmetic-geometric mean, Problem 83-12, SIAM Review25 (1983), pp. 201.
- [12] B.C. Carlson, Hidden symmetries of special functions, SIAM Review12 (1970), pp. 332-345. Zbl0204.38503MR262554
- [13] -, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly78 (1971), pp. 496-504. Zbl0218.65035MR283246
- [14] J.E. Cohen - R.D. Nussbaum, Arithmetic-geometric means of positive matrices, Math. Proc. Cambridge Phil. Soc. 101 (1987), pp. 209-219. Zbl0623.15012MR870592
- [15] D.A. Cox, The arithmetic-geometric mean of Gauss, Enseignement Math.30 (1984), Pl275-330. Zbl0583.33002MR767905
- [16] W. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer-Verlag, New York, 1974. Zbl0278.30004MR486556
- [17] N. Dunford - J. Schwartz, Linear Operators, vol. 1, Interscience, New York, 1958. Zbl0084.10402
- [18] C.J. Everett - N. Metropolis, A generalization of the Gauss limit for iterated means, Advances in Math.7 (1971), pp. 297-300. Zbl0221.40001MR296232
- [19] Jun-Ichi Fujii, Arithmetic-geometric means of operators, Math. Japonica23 (1979), pp. 667-669. Zbl0407.47011MR529901
- [20] G.H. Hardy - J.E. Littlewood - G. Polya, Inequalities, 2nd ed., Cambridge University Press, 1959. Zbl0047.05302
- [21] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, New York, 1984. Zbl0531.47014
- [22] D.H. Lehmer, On the compounding of certain means, J. Math. Anal. Appl.36 (1971), pp. 183-200. Zbl0222.26018MR281696
- [23] K. Lowner - C. Loewner, Uber monotone Matrixfunktionen, Math. Zeit.38 (1934), pp. 177-216. Zbl0008.11301MR1545446JFM60.0055.01
- [24] C. LoewnerSome classes of functions defined by difference or differential inequalities, Bull. Amer. Math. Soc.56 (1950), pp. 308-319. Zbl0041.18202MR38387
- [25] A.W. Marshall - I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979. Zbl0437.26007MR552278
- [26] R.D. Nussbaum, Iterated nonlinear maps and Hilbert's projective metric, Memoirs Amer. Math. Soc., no. 391 (1988). Zbl0666.47028
- [27] —, Iterated nonlinear maps and Hilbert's projective metric: a summary, in Dynamics of Infinite Dimensional Systems, edited by S.N. Chow and J.K. Hale, Springer Verlag, Heidelberg, 1987, pp. 231-249.
- [28] -, Convexity and log convexity for the spectral radius, Linear Alg. and Appl.73 (1986), pp. 59-122. Zbl0588.15016MR818894
- [29] I. Olkin - J.W. Pratt, A multivariable Tchebycheff inequality, Annals of Math. Stat.29 (1958), pp. 226-234. Zbl0085.35204MR93865
- [30] J. Peetre, Iteration of power means and other related means, preprint, University of Lund, Sweden, 1984.
- [31] W. Pusz - S.L. Woronowicz, Functional calculus for sesquilinear forms, and the purification map, Rep. Math. Phys.8 (1975), pp. 159-170. Zbl0327.46032MR420302
- [32] E.U. Stickel, Fast computation of matrix exponential and logarithm, Analysis (München) 5 (1985), pp. 163-173. Zbl0543.65021MR791497
- [33] A.E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958. Zbl0081.10202MR98966
- [34] P. Whittle, A multivariate generalization of Tchebychev's inequality, Quarterly J. of Math. Oxford, Series 2, 9 (1958), pp. 232-240. Zbl0085.35205MR100321
- [35] J. Wimp, Computation with Recurrence Relations, Pittman Advanced Publishing Program, Boston, 1984. Zbl0543.65084MR727118
- [36] K. Yoshida, Functional Analysis, 6th ed., Springer-Verlag, New York, 1980.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.