The arithmetic-geometric mean and its generalizations for noncommuting linear operators

Roger D. Nussbaum; Joel E. Cohen

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 2, page 239-308
  • ISSN: 0391-173X

How to cite

top

Nussbaum, Roger D., and Cohen, Joel E.. "The arithmetic-geometric mean and its generalizations for noncommuting linear operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.2 (1988): 239-308. <http://eudml.org/doc/84031>.

@article{Nussbaum1988,
author = {Nussbaum, Roger D., Cohen, Joel E.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {operator means and their iterates; arithmetic-geometric mean},
language = {eng},
number = {2},
pages = {239-308},
publisher = {Scuola normale superiore},
title = {The arithmetic-geometric mean and its generalizations for noncommuting linear operators},
url = {http://eudml.org/doc/84031},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Nussbaum, Roger D.
AU - Cohen, Joel E.
TI - The arithmetic-geometric mean and its generalizations for noncommuting linear operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 2
SP - 239
EP - 308
LA - eng
KW - operator means and their iterates; arithmetic-geometric mean
UR - http://eudml.org/doc/84031
ER -

References

top
  1. [1] W.N. AndersonJr. - R.J. Duffin, Series and parallel addition of matrices, J. Math. Anal. Appl.26 (1969), pp. 576-594. Zbl0177.04904MR242573
  2. [2] W.N. AndersonJr. - G.E. Trapp, Shorted operators II, SIAM J. Appl. Math.28 (1975), pp. 60-71. Zbl0295.47032MR356949
  3. [3] Tsuyoshi Ando, Concavity of certain maps on positive definite matrices and applications to Hadamard products, Linear Algebra and its Applications27 (1979), pp. 203-241. Zbl0495.15018MR535686
  4. [4] -, On the arithmetic-geometric-harmonic mean inequality for positive definite matrices, Linear Algebra and its Applications52-53 (1983), pp. 31-37. Zbl0516.15011MR709342
  5. [5] Tsuyoshi Ando - Fumio Kubo, Means of positive linear operators, Math. Ann.246 (1980), pp. 205-244. Zbl0412.47013MR563399
  6. [6] J. Arazy - T. Claesson - S. Janson - J. Peetre, Means and their iterations, in Proceedings of the Nineteenth Nordic Congress of Mathematicians, Reykjavik, 1984, pp. 191-212 (published by the Icelandic Math. Soc., 1985). Zbl0606.26007MR828035
  7. [7] R. Arens, The analytic-functional calculus in commutative topological algebras, Pac. J. Math.11 (1961), pp. 405-429. Zbl0109.34203MR140960
  8. [8] J. Bendat - S. Sherman, Monotone and convex operator functions, Trans. Amer. Math. Soc.79 (1955), pp. 58-71. Zbl0064.36901MR82655
  9. [9] G. Borchardt, Gesammelte Werke, Herausgegeben von G. Hettner, Reimer. Berlin, 1888. JFM20.0015.01
  10. [10] J.M. Borwein - P.B. Borwein, The arithmetic-geometric means and fast computation of elementary functions, SIAM Review26 (1984), pp. 351-366. Zbl0557.65009MR750454
  11. [11] D. Borwein - P.B. Borwein, A generalized arithmetic-geometric mean, Problem 83-12, SIAM Review25 (1983), pp. 201. 
  12. [12] B.C. Carlson, Hidden symmetries of special functions, SIAM Review12 (1970), pp. 332-345. Zbl0204.38503MR262554
  13. [13] -, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly78 (1971), pp. 496-504. Zbl0218.65035MR283246
  14. [14] J.E. Cohen - R.D. Nussbaum, Arithmetic-geometric means of positive matrices, Math. Proc. Cambridge Phil. Soc. 101 (1987), pp. 209-219. Zbl0623.15012MR870592
  15. [15] D.A. Cox, The arithmetic-geometric mean of Gauss, Enseignement Math.30 (1984), Pl275-330. Zbl0583.33002MR767905
  16. [16] W. Donoghue, Monotone Matrix Functions and Analytic Continuation, Springer-Verlag, New York, 1974. Zbl0278.30004MR486556
  17. [17] N. Dunford - J. Schwartz, Linear Operators, vol. 1, Interscience, New York, 1958. Zbl0084.10402
  18. [18] C.J. Everett - N. Metropolis, A generalization of the Gauss limit for iterated means, Advances in Math.7 (1971), pp. 297-300. Zbl0221.40001MR296232
  19. [19] Jun-Ichi Fujii, Arithmetic-geometric means of operators, Math. Japonica23 (1979), pp. 667-669. Zbl0407.47011MR529901
  20. [20] G.H. Hardy - J.E. Littlewood - G. Polya, Inequalities, 2nd ed., Cambridge University Press, 1959. Zbl0047.05302
  21. [21] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, New York, 1984. Zbl0531.47014
  22. [22] D.H. Lehmer, On the compounding of certain means, J. Math. Anal. Appl.36 (1971), pp. 183-200. Zbl0222.26018MR281696
  23. [23] K. Lowner - C. Loewner, Uber monotone Matrixfunktionen, Math. Zeit.38 (1934), pp. 177-216. Zbl0008.11301MR1545446JFM60.0055.01
  24. [24] C. LoewnerSome classes of functions defined by difference or differential inequalities, Bull. Amer. Math. Soc.56 (1950), pp. 308-319. Zbl0041.18202MR38387
  25. [25] A.W. Marshall - I. Olkin, Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979. Zbl0437.26007MR552278
  26. [26] R.D. Nussbaum, Iterated nonlinear maps and Hilbert's projective metric, Memoirs Amer. Math. Soc., no. 391 (1988). Zbl0666.47028
  27. [27] —, Iterated nonlinear maps and Hilbert's projective metric: a summary, in Dynamics of Infinite Dimensional Systems, edited by S.N. Chow and J.K. Hale, Springer Verlag, Heidelberg, 1987, pp. 231-249. 
  28. [28] -, Convexity and log convexity for the spectral radius, Linear Alg. and Appl.73 (1986), pp. 59-122. Zbl0588.15016MR818894
  29. [29] I. Olkin - J.W. Pratt, A multivariable Tchebycheff inequality, Annals of Math. Stat.29 (1958), pp. 226-234. Zbl0085.35204MR93865
  30. [30] J. Peetre, Iteration of power means and other related means, preprint, University of Lund, Sweden, 1984. 
  31. [31] W. Pusz - S.L. Woronowicz, Functional calculus for sesquilinear forms, and the purification map, Rep. Math. Phys.8 (1975), pp. 159-170. Zbl0327.46032MR420302
  32. [32] E.U. Stickel, Fast computation of matrix exponential and logarithm, Analysis (München) 5 (1985), pp. 163-173. Zbl0543.65021MR791497
  33. [33] A.E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958. Zbl0081.10202MR98966
  34. [34] P. Whittle, A multivariate generalization of Tchebychev's inequality, Quarterly J. of Math. Oxford, Series 2, 9 (1958), pp. 232-240. Zbl0085.35205MR100321
  35. [35] J. Wimp, Computation with Recurrence Relations, Pittman Advanced Publishing Program, Boston, 1984. Zbl0543.65084MR727118
  36. [36] K. Yoshida, Functional Analysis, 6th ed., Springer-Verlag, New York, 1980. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.