Subharmonic solutions for hamiltonian systems via a p pseudoindex theory

Gabriella Tarantello

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 3, page 357-409
  • ISSN: 0391-173X

How to cite

top

Tarantello, Gabriella. "Subharmonic solutions for hamiltonian systems via a $\mathbb {Z}_p$ pseudoindex theory." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.3 (1988): 357-409. <http://eudml.org/doc/84034>.

@article{Tarantello1988,
author = {Tarantello, Gabriella},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {subharmonic solutions; nonautonomous second order systems},
language = {eng},
number = {3},
pages = {357-409},
publisher = {Scuola normale superiore},
title = {Subharmonic solutions for hamiltonian systems via a $\mathbb \{Z\}_p$ pseudoindex theory},
url = {http://eudml.org/doc/84034},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Tarantello, Gabriella
TI - Subharmonic solutions for hamiltonian systems via a $\mathbb {Z}_p$ pseudoindex theory
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 3
SP - 357
EP - 409
LA - eng
KW - subharmonic solutions; nonautonomous second order systems
UR - http://eudml.org/doc/84034
ER -

References

top
  1. [1] V. Benci: A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math.34 (1981), pp. 393-432. Zbl0447.34040MR615624
  2. [2] V. Benci: On the critical point theory for indefinite functionals in the presence of symmetries, Trans. Am. Math. Soc.274 (1982), pp. 533-572. Zbl0504.58014MR675067
  3. [3] V. Benci - D. Fortunato: Subharmonic solutions of prescribed minimal period for nonautonomous differential equations, preprint. Zbl0663.70028MR902625
  4. [4] H. Berestycki - J.M. Lasry - G. Mancini - B. Ruf: Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math.38 (1985), pp. 253-289. Zbl0569.58027MR784474
  5. [5] G.D. Birkhoff - D.C. Lewis: On the periodic motion near a given periodic motion of a dynamical system, Ann. Mat. Pure Appl. 12 (1933), pp. 117-133. Zbl0007.37104JFM59.0733.05
  6. [6] F. Clarke - I. Ekeland: Nonlinear oscillations and boundary value problems for Hamiltonian systems, Archive Rat. Mech. Anal.78 (1982), pp. 315-333. Zbl0514.34032MR653545
  7. [7] I. Ekeland - H. Hofer: Subharmonics for convex nonautonomous Hamiltonian systems, Comm. Pure Appl. Math.40 (1987), pp. 1-36. Zbl0601.58035MR865356
  8. [8] I. Ekeland - H. Hofer: Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Inventions Math.81 (1985), pp. 155-188. Zbl0594.58035MR796195
  9. [9] E. Fadell - S. Husseini - P.H. Rabinowiz: Borsuk-Ulam theorem for arbitrary S1 actions and applications, M.R.C. Tech. Summary report 2301Madison, WI 53706. 
  10. [10] M. Girardi - M. Matzeu: Solutions of minimal period for a class of nonconvex Hamiltonian systems and application to the fixed Energy problem, Nonlinear Analysis T.M.A. Vol. 10 n. 34 (1986), pp. 371-382. Zbl0607.70018MR836672
  11. [11] M. Girardi - M. Matzeu: Periodic solutions of convex autonomous Hamiltonian systems with quadratic growth at the origin and superquadratic at infinity, preprint. 
  12. [12] R. Michalek: A Z P Borsuk-Ulam theorem and Index theory with a multiplicity result, preprint. Zbl0688.58040
  13. [13] R. Michalek - G. Tarantello: Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems, J. Diff. Eq. in press. Zbl0645.34038
  14. [14] J. Moser: Proof of a generalized fixed point theorem due to G.D. Birkhoff, Lecture notes in Mathematics, 597Springer Verlag, New York1977. Zbl0358.58009MR494305
  15. [15] L. Nirenberg: Comments on nonlinear problems, Conference Proceedings, Catania Sept. 1981. MR736798
  16. [16] P.H. Rabinowitz: On subharmonic solutions of Hamiltonian systems, Comm. Pure Appl. Math.33 (1980), pp. 609-633. Zbl0425.34024MR586414
  17. [17] P.H. Rabinowitz: Variational methods for nonlinear eigenvalue problem, in Eigenvalue of nonlinear problems, ed. G. Prodi, edizioni CremoneseRome1974. Zbl0278.35040MR464299
  18. [18] H. Weyl: The theory of groups and quantum mechanics, Dover, New York, 1950. Zbl0041.56804
  19. [19] V. Benci - D. Fortunato: A "Birkhoff-Lewis" type result for a class of Hamiltonian systems, preprint. MR915996

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.