Polynomial hulls in 2 and quasicircles

Zbigniew Slodkowski

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 3, page 367-391
  • ISSN: 0391-173X

How to cite

top

Slodkowski, Zbigniew. "Polynomial hulls in $\mathbb {C}^2$ and quasicircles." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.3 (1989): 367-391. <http://eudml.org/doc/84058>.

@article{Slodkowski1989,
author = {Slodkowski, Zbigniew},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {polynomial hull; analytic disc},
language = {eng},
number = {3},
pages = {367-391},
publisher = {Scuola normale superiore},
title = {Polynomial hulls in $\mathbb \{C\}^2$ and quasicircles},
url = {http://eudml.org/doc/84058},
volume = {16},
year = {1989},
}

TY - JOUR
AU - Slodkowski, Zbigniew
TI - Polynomial hulls in $\mathbb {C}^2$ and quasicircles
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 3
SP - 367
EP - 391
LA - eng
KW - polynomial hull; analytic disc
UR - http://eudml.org/doc/84058
ER -

References

top
  1. [1] H. Alexander, Hulls of deformations in Cn, Trans. Amer. Math. Soc.266 (1981), 243-257. Zbl0493.32017MR613794
  2. [2] H. Alexander - J. Wermer, Polynomial hulls with convex fibers, Math. Ann.27 (1985), 99-109. Zbl0538.32011MR779607
  3. [3] E. Bedford - B. Gaveau, Envelopes of holomorphy of certain 2-spheres in C2, Amer. J. Math. 105 (1983), 975-1009. Zbl0535.32008MR708370
  4. [4] J. Bence - J.W. Helton - D.E. Marshall, Optimization over H∞. 
  5. [5] E. Bishop, Differentiable manifolds in complex Euclidean spaces, Duke Math. J.32 (1965), 1-21. Zbl0154.08501MR200476
  6. [6] E.M. Čirka, Regularity of boundaries of analytic sets, Math. USSR-Sb.117 (1982), 291-334, (Russian) Math. USSR-Sb.45 (1983), 291-336. Zbl0525.32005MR648411
  7. [7] F Forstnerič, Polynomially convex hulls with piecewise smooth boundaries, Math. Ann.276 (1986), 97-104. Zbl0585.32016MR863710
  8. [8] F Forstnerič, Polynomial hulls of sets fibered over the circle, Indiana Univ. Math. J.37 (1988), 869-889. Zbl0647.32017MR982834
  9. [9] J.W. Helton - R.E. Howe, A bang-bang theorem for optimization over spaces of analytic functions, J. Approx. Theory47 (1986), 101-121. Zbl0589.49004MR844946
  10. [10] J.W. Helton - D.F. Schwartz - S.E. Warchawski, Local optima in H∞ produce a constant objective function, Complex Variables, 8 (1987), 65-81. Zbl0577.49009
  11. [11] O. Lehto, University functions and Teichmüller spaces, Springer-Verlag, New York1986. MR486503
  12. [12] Chr. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht in Göttingen, 1975. Zbl0298.30014MR507768
  13. [13] Z. Slodkowski, Local maximum property and q-plurisubharmonic functions in uniform algebras, J. Math Anal. Appl.115 (1986). 105-130. Zbl0646.46047MR835588
  14. [ 14] Z. Slodkowski, Polynomially convex hulls with convex sections and interpolating spaces, Proc. Amer. Math. Soc.96 (1986), 255-260. Zbl0588.32017MR818455
  15. [15] J. Wermer, Polynomially convex hulls and analyticity, Ark. Mat., 20 (1982), 129-135. Zbl0491.32013MR660131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.