An intermediate existence theory in the calculus of variations
Frank H. Clarke; Philip D. Loewen
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)
- Volume: 16, Issue: 4, page 487-526
- ISSN: 0391-173X
Access Full Article
topHow to cite
topClarke, Frank H., and Loewen, Philip D.. "An intermediate existence theory in the calculus of variations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.4 (1989): 487-526. <http://eudml.org/doc/84060>.
@article{Clarke1989,
author = {Clarke, Frank H., Loewen, Philip D.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {487-526},
publisher = {Scuola normale superiore},
title = {An intermediate existence theory in the calculus of variations},
url = {http://eudml.org/doc/84060},
volume = {16},
year = {1989},
}
TY - JOUR
AU - Clarke, Frank H.
AU - Loewen, Philip D.
TI - An intermediate existence theory in the calculus of variations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 4
SP - 487
EP - 526
LA - eng
UR - http://eudml.org/doc/84060
ER -
References
top- [1] L. Cesari, Optimization-Theory and Applications, Springer-Verlag, New York, 1983. Zbl0506.49001MR688142
- [2] F.H. Clarke, The Euler-Lagrange differential inclusion, J. Differential Equations19 (1975), 80-90. Zbl0323.49021MR388196
- [3] F.H. Clarke, Solutions périodiques des équations hamiltoniennes, Comptes Rendus Acad. Sci. Paris287 (1978), 951-952. Zbl0422.35005MR520777
- [4] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York, 1983. Zbl0582.49001MR709590
- [5] F.H. Clarke, Hamiltonian trajectories and local minima of the dual action, Trans. Amer. Math. Soc.287 (1985), 239-251. Zbl0596.49030MR766217
- [6] F.H. Clarke - I. Ekeland, Nonlinear oscillations and boundary value problems for Hamiltonian systems, Arch. Rational Mech. Anal.78 (1982), 315-333. Zbl0514.34032MR653545
- [7] F.H. Clarke - R.B. Vinter, On the conditions under which the Euler equation or the maximum principle hold, Appl. Math. Optim.12 (1984), 73-79. Zbl0559.49012MR756513
- [8] F.H. Clarke - R.B. Vinter, Regularity properties of solutions to the basic problem in the calculus of variations, Trans. Amer. Math. Soc.289 (1985), 73-98. Zbl0563.49009MR779053
- [9] F.H. Clarke - R.B. Vinter, Existence and regularity in the small in the calculus of variations, J. Differential Equations59 (1985), 336-354. Zbl0727.49003MR807852
- [10] P.D. Loewen, On the Lavrentiev phenomenon, Canad. Math. Bull.30 (1987), 102-108. Zbl0579.49002MR879878
- [11] R.T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N.J., 1970. Zbl0193.18401
- [12] R.T. Rockafellar, Existence theorems for general control problems of Bolza and Lagrange, Adv. in Math.15 (1975), 312-333. Zbl0319.49001MR365273
- [13] L. Tonelli, Sur une méthode directe du calcul des variations, Rend. Circ. Mat. Palermo39 (1915), 233-264; also in Opere Scelte (Vol. 2), 289-333, Cremonese, Rome, 1961. Zbl45.0615.02JFM45.0615.02
- [14] L. Tonelli, Fondamenti di Calcolo delle Variazioni (2 Vols.), Zanichelli, Bologna, 1921, 1923. JFM48.0581.09
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.