Algebraic and topological selections of multi-valued linear relations
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)
- Volume: 17, Issue: 1, page 111-126
- ISSN: 0391-173X
Access Full Article
topHow to cite
topLee, Sung J., and Nashed, M. Zuhair. "Algebraic and topological selections of multi-valued linear relations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.1 (1990): 111-126. <http://eudml.org/doc/84065>.
@article{Lee1990,
author = {Lee, Sung J., Nashed, M. Zuhair},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {algebraic and topological single-valued linear selections of a multi- valued linear relation; topological operator parts},
language = {eng},
number = {1},
pages = {111-126},
publisher = {Scuola normale superiore},
title = {Algebraic and topological selections of multi-valued linear relations},
url = {http://eudml.org/doc/84065},
volume = {17},
year = {1990},
}
TY - JOUR
AU - Lee, Sung J.
AU - Nashed, M. Zuhair
TI - Algebraic and topological selections of multi-valued linear relations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 1
SP - 111
EP - 126
LA - eng
KW - algebraic and topological single-valued linear selections of a multi- valued linear relation; topological operator parts
UR - http://eudml.org/doc/84065
ER -
References
top- [1] R. Arens, Operational calculus of linear relations, Pacific J. Math.11 (1961), 9-23. Zbl0102.10201MR123188
- [2] J.P. Aubin - A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, Heidelberg, New York, 1984. Zbl0538.34007MR755330
- [3] E.A. Coddington - A. Dijksma, Adjoint subspaces in Banach spaces, with applications to ordinary differential subspaces, Ann. Mat. Pura Appl. 118 (1978), 1-118. Zbl0408.47035MR533601
- [4] H.W. Engl - M.Z. Nashed, New extremal characterizations of generalized inverses of linear operators, J. Math. Anal. Appl. 82 (1981), 566-586. Zbl0492.47012MR629778
- [5] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966. Zbl0148.12601MR203473
- [6] S.J. Lee - M.Z. Nashed, Least-squares solutions of multi-valued linear operator equations in Hilbert spaces, J. Approx. Theory38 (1983), 380-391. Zbl0519.47001MR711464
- [7] S.J. Lee - M.Z. Nashed, Constrained least-squares solutions of linear inclusions and singular control problems in Hilbert spaces, Appl. Math. Optim.19 (1989), 225-242. Zbl0667.49003MR974186
- [8] M.Z. Nashed - G.F. Votruba, A unified approach to generalized inverses of linear operators: I. Algebraic, topological and projectional properties, Bull. Amer. Math. Soc.80 (1974), 825-830. Zbl0289.47011MR365190
- See also A unified operator theory of generalized inverses, in Generalized Inverses and Applications (M.Z. Nashed, Ed.), Academic Press, New York, 1976, 1-109. Zbl0356.47001MR493448
- [9] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. Zbl0253.46001MR365062
- [10] A. Sobczyk, Projections in Minkowski and Banach spaces, Duke Math. J.8 (1941), 78-106. Zbl0025.06304MR3443JFM67.0403.03
- [11] J. Von Neumann, Über adjungierte Funktional-operatoren, Ann. Math.33 (1932), 294-310. Zbl0004.21603MR1503053JFM58.0423.02
- [12] J. Von Neumann, Functional Operators, Vol. II: The Geometry of Orthogonal Spaces, Ann. of Math. Studies, No. 22, Princeton University Press, 1950. Zbl0039.11701
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.