Algebraic and topological selections of multi-valued linear relations

Sung J. Lee; M. Zuhair Nashed

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 1, page 111-126
  • ISSN: 0391-173X

How to cite

top

Lee, Sung J., and Nashed, M. Zuhair. "Algebraic and topological selections of multi-valued linear relations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.1 (1990): 111-126. <http://eudml.org/doc/84065>.

@article{Lee1990,
author = {Lee, Sung J., Nashed, M. Zuhair},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {algebraic and topological single-valued linear selections of a multi- valued linear relation; topological operator parts},
language = {eng},
number = {1},
pages = {111-126},
publisher = {Scuola normale superiore},
title = {Algebraic and topological selections of multi-valued linear relations},
url = {http://eudml.org/doc/84065},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Lee, Sung J.
AU - Nashed, M. Zuhair
TI - Algebraic and topological selections of multi-valued linear relations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 1
SP - 111
EP - 126
LA - eng
KW - algebraic and topological single-valued linear selections of a multi- valued linear relation; topological operator parts
UR - http://eudml.org/doc/84065
ER -

References

top
  1. [1] R. Arens, Operational calculus of linear relations, Pacific J. Math.11 (1961), 9-23. Zbl0102.10201MR123188
  2. [2] J.P. Aubin - A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, Heidelberg, New York, 1984. Zbl0538.34007MR755330
  3. [3] E.A. Coddington - A. Dijksma, Adjoint subspaces in Banach spaces, with applications to ordinary differential subspaces, Ann. Mat. Pura Appl. 118 (1978), 1-118. Zbl0408.47035MR533601
  4. [4] H.W. Engl - M.Z. Nashed, New extremal characterizations of generalized inverses of linear operators, J. Math. Anal. Appl. 82 (1981), 566-586. Zbl0492.47012MR629778
  5. [5] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966. Zbl0148.12601MR203473
  6. [6] S.J. Lee - M.Z. Nashed, Least-squares solutions of multi-valued linear operator equations in Hilbert spaces, J. Approx. Theory38 (1983), 380-391. Zbl0519.47001MR711464
  7. [7] S.J. Lee - M.Z. Nashed, Constrained least-squares solutions of linear inclusions and singular control problems in Hilbert spaces, Appl. Math. Optim.19 (1989), 225-242. Zbl0667.49003MR974186
  8. [8] M.Z. Nashed - G.F. Votruba, A unified approach to generalized inverses of linear operators: I. Algebraic, topological and projectional properties, Bull. Amer. Math. Soc.80 (1974), 825-830. Zbl0289.47011MR365190
  9. See also A unified operator theory of generalized inverses, in Generalized Inverses and Applications (M.Z. Nashed, Ed.), Academic Press, New York, 1976, 1-109. Zbl0356.47001MR493448
  10. [9] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973. Zbl0253.46001MR365062
  11. [10] A. Sobczyk, Projections in Minkowski and Banach spaces, Duke Math. J.8 (1941), 78-106. Zbl0025.06304MR3443JFM67.0403.03
  12. [11] J. Von Neumann, Über adjungierte Funktional-operatoren, Ann. Math.33 (1932), 294-310. Zbl0004.21603MR1503053JFM58.0423.02
  13. [12] J. Von Neumann, Functional Operators, Vol. II: The Geometry of Orthogonal Spaces, Ann. of Math. Studies, No. 22, Princeton University Press, 1950. Zbl0039.11701

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.