Uniform boundary regularity of proper holomorphic maps

Wilhelm Klingenberg

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 3, page 355-364
  • ISSN: 0391-173X

How to cite

top

Klingenberg, Wilhelm. "Uniform boundary regularity of proper holomorphic maps." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.3 (1990): 355-364. <http://eudml.org/doc/84078>.

@article{Klingenberg1990,
author = {Klingenberg, Wilhelm},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {proper holomorphic maps; boundary regularity},
language = {eng},
number = {3},
pages = {355-364},
publisher = {Scuola normale superiore},
title = {Uniform boundary regularity of proper holomorphic maps},
url = {http://eudml.org/doc/84078},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Klingenberg, Wilhelm
TI - Uniform boundary regularity of proper holomorphic maps
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 3
SP - 355
EP - 364
LA - eng
KW - proper holomorphic maps; boundary regularity
UR - http://eudml.org/doc/84078
ER -

References

top
  1. [1] S. Bell, Compactness of families of holomorphic mappings up to the boundary, Springer LNM1268, 29-42. Zbl0633.32020
  2. [2] S. Bell, A generalization of Cartan's Theorem to proper holomorphic mappings, J. Math. Pures Appl., 67, 1988, 85-92. Zbl0638.32025
  3. [3] S. Bell, Proper holomorphic mappings and the Bergman kernel function, Duke Math. J.48 (1981), 167-175. Zbl0465.32014
  4. [4] S. Bell, Differentiability of the Bergman kernel and pseudo-local estimates, to appear in Math. Zeit. Zbl0594.32025
  5. [5] S. Bell - D. Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J.49 (1982), 385-396. Zbl0475.32011
  6. [6] J. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math.115 (1982), 615-637. Zbl0488.32008
  7. [7] K. Diederich - J.E. Fornaess, Boundary regularity of proper holomorphic mappings, Invent. Math.67 (1982), 363-384. Zbl0501.32010
  8. [8] G. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton1976. Zbl0325.35001
  9. [9] N. Kerzman, The Bergman kernel function: Differentiability at the boundary, Math. Ann.195 (1972), 149-158. Zbl0216.10503
  10. [10] W. Klingenberg - S. Pinchuk, Normal families of proper holomorphic correspondences, University of Minnesota Mathematics Report #88-113. Zbl0735.32019
  11. [11] R. Narasimhan, Several complex variables, Chicago Lectures in Mathematics, University of Chicago Press (1971). Zbl0223.32001
  12. [12] H. Whitney, Complex Analytic Varieties, Addison Wesley, Reading, Mass., 1972. Zbl0265.32008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.