Limit theorems for a variational problem arising in computer vision

Thomas J. Richardson

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 1, page 1-49
  • ISSN: 0391-173X

How to cite

top

Richardson, Thomas J.. "Limit theorems for a variational problem arising in computer vision." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.1 (1992): 1-49. <http://eudml.org/doc/84117>.

@article{Richardson1992,
author = {Richardson, Thomas J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {free discontinuity problem; computer vision},
language = {eng},
number = {1},
pages = {1-49},
publisher = {Scuola normale superiore},
title = {Limit theorems for a variational problem arising in computer vision},
url = {http://eudml.org/doc/84117},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Richardson, Thomas J.
TI - Limit theorems for a variational problem arising in computer vision
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 1
SP - 1
EP - 49
LA - eng
KW - free discontinuity problem; computer vision
UR - http://eudml.org/doc/84117
ER -

References

top
  1. [1] R. Adams, Sobolev Spaces, Academic PressN.Y.1975. Zbl0314.46030MR450957
  2. [2] L. Ambrosio, A Compactness Theorem for a Special Class of Functions of Bounded Variation, Boll. Un. Mat. Ital., 3-B No. 4, 1989, 857-881. Zbl0767.49001MR1032614
  3. [3] L. Ambrosio, Variational Problems on SBV, Center for Intelligent Control Systems Report CICS-P-86, MIT, 1989. 
  4. [4] A. Blake - A. Zisserman, Visual Reconstruction, MIT Press, Cambridge, 1987. MR919733
  5. [5] G. Congedo - I. Tamanini, On the Existence of Solutions to a Problem in Image Segmentation, preprint. 
  6. [6] G. Dal Maso - J.M. Morel - S. Solimini, A Variational Method in Image Segmentation: Existence and Approximation Results, S.I.S.S.A. 48 M, April 1989. Zbl0772.49006
  7. [7] E. De Giorgi - L. Amrbosio, Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei, 1988. 
  8. [8] E. De Giorgi, Free Discontinuity Problems in Calculus of Variations, to appear in proceedings of the meeting in J.L. Lions' honor, Paris1988. Zbl0758.49002
  9. [9] E. De Giorgi - M. Carriero - A. Leaci, Existence Theorem for a Minimum Problem with Free Discontinuity Set, preprint, University of Lecce1988. 
  10. [10] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985. Zbl0587.28004MR867284
  11. [11] H. Federer, Geometric Measure Theory, Springer-Verlag, 1969. Zbl0176.00801MR257325
  12. [12] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Basel, 1983. Zbl0545.49018MR775682
  13. [13] D. Marr, Vision, W.H. Freeman and Co.1982Proc. Roy. Soc. LondonB, 207, 187-217, 1980. 
  14. [14] J.-M. Morel - S. Solimini, Segmentation of Images by Variational Methods: a Constructive Approach, Rev. Mat. Univ. Complut. Madrid, 1, 1, 2, 3; 1988. Zbl0679.68205MR977048
  15. [15] D. Mumford - J. Shah, Boundary Detection by Minimizing Functionals, IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco1985. 
  16. [16] D. Mumford - J. Shah, Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Appl. Math., XLII, No. 4 July, 1989, 577-685. Zbl0691.49036MR997568
  17. [17] T.J. Richardson, Scale Independent Piecewise Smooth Segmentation of Images via Variational Methods, Ph.D. Thesis Dept. of E.E. & C.S., M.I.T.1990. 
  18. [18] C.A. Rogers, Hausdorff Measure, Cambridge University Press, 1970. Zbl0204.37601MR281862
  19. [19] A. Rosenfeld - M. Thurston, Edge and Curve Dectection for Visual Scene Analysis, IEEE Trans. Comput.C-20, May 1971, 562-569. 
  20. [20] W. Rudin, Functional Analysis, McGraw Hill, 1973. Zbl0253.46001MR365062
  21. [21] J. Serra, Image Analysis and Mathematical Morphology, Academic Press Inc., 1982. Zbl0565.92001MR753649
  22. [22] J. Shah, Segmentation by Minimizing Functionals: Smoothing Properties, preprint. 
  23. [23] Y. Wang, Ph.D. ThesisHarvard University Math. Dept. 1989. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.