The inverse of a local operator preserves the Markov property

Koichiro Iwata

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)

  • Volume: 19, Issue: 2, page 223-253
  • ISSN: 0391-173X

How to cite

top

Iwata, Koichiro. "The inverse of a local operator preserves the Markov property." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 223-253. <http://eudml.org/doc/84124>.

@article{Iwata1992,
author = {Iwata, Koichiro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Markov property; generalized random field; electromagnetic field},
language = {eng},
number = {2},
pages = {223-253},
publisher = {Scuola normale superiore},
title = {The inverse of a local operator preserves the Markov property},
url = {http://eudml.org/doc/84124},
volume = {19},
year = {1992},
}

TY - JOUR
AU - Iwata, Koichiro
TI - The inverse of a local operator preserves the Markov property
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 223
EP - 253
LA - eng
KW - Markov property; generalized random field; electromagnetic field
UR - http://eudml.org/doc/84124
ER -

References

top
  1. [1] S. Albeverio - R. Høegh-Krohn - H. Holden - T. Kolsrud, Representation and construction of multiplicative noise, J. Funct. Anal.87 (1989), pp. 250-272. Zbl0696.60012MR1026853
  2. [2] S. Albeverio - R. Høegh-Krohn - K. Iwata, Covariant markovian random fields in four space-time dimensions with nonlinear electromagnetic interaction, Proc. Dubna Conference 1987. P. Exner, P. Seba ed. Lecture Notes in Phys.324Springer1989. Zbl0722.60044MR1009842
  3. [3] S. Albeverio - R. Høegh-Krohn - D. Surgailis, Some Euclidean Integer-Valued Random Field with Markov Properties, Ruhr-Universität preprint 1990 to appear in Memorial Volume for R. Høegh-Krohn, Cambridge University Press. Zbl0782.60074MR1190493
  4. [4] S. Albeverio - K. Iwata - T. Kolsrud, Random fields as solutions of the inhomogeneous quaternionic Cauchy-Riemann equation. I. Invariance and analytic continuation, Comm. Math. Phys.132 (1990), pp. 555-580. Zbl0711.60058MR1069837
  5. [5] S. Albeverio - K. Iwata - T. Kolsrud, Homogeneous Markov generalized vector fields and quantum fields over 4-dimensional space-time, to appear in Proc. Trento. Da Prato, Tubaro Edts. Lecture Notes in Math.Springer. Zbl0797.60092MR1222685
  6. [6] S. Albeverio - B. Zegarlinski, Global Markov Property: results and open problems, to appear in Memorial Volume for R. Høegh-Krohn, Cambridge University Press. MR1190533
  7. [7] J.L. Doob, The elementary Gaussian processes, Ann. Math. Statist.15 (1944), pp. 229-282. Zbl0060.28907MR10931
  8. [8] E.B. Dynkin, Markov processes and random fields, Bull. Amer. Math. Soc.3 (1980), pp. 975-999. Zbl0519.60046MR585179
  9. [9] I.M. Gel'fand - N. Ya.VILENKIN, Generalized functions, Vol. 4 English translation, Academic Press1964. MR173945
  10. [10] V. Georgescu - R. Purice, On the Markov property for the free Euclidean electromagnetic field, Lett. Math. Phys.4 (1980), pp. 465-467. Zbl0464.58022MR599708
  11. [11] L. Gross, The free euclidean Proca and electromagnetic fields, Proc. International Conference Cumberland Lodge. Functional integration and its applications. 1974Clorendon Press1975. MR475437
  12. [12] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer1983. Zbl0521.35001
  13. [13] K. Itô, Foundations of stochastic differential equations in infinite dimensional spaces, CBNS - NSF Regional Conf. Series in Appl. Math. Vol. 47SIAM1984. Zbl0547.60064MR771478
  14. [14] K. Iwata, On Linear Maps Preserving Markov Properties and Applications to Multicomponent Generalized Random Fields, Dissertation Ruhr-Universität Bochum1990. Zbl0783.60050
  15. [15] T. Kolsrud, On the Markov property for certain Gaussian random fields, Probab. Theory Related Fields74 (1986), pp. 393-402. Zbl0592.60039MR873886
  16. [16] S. Kotani, On a Markov property for stationary Gaussian processes with a multidimensional parameter, Proc. 2nd Japan USSR Symposium Probability, Lecture Notes in Math. 330 Springer1977. Zbl0335.60031MR443055
  17. [17] H. Künsch, Gaussian Markov random fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math.26 (1979), pp. 53-73. Zbl0408.60038MR539773
  18. [18] S. Kusuoka, Markov fields and local operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math.26 (1979), pp. 199-212. Zbl0418.60053MR550683
  19. [19] N. Levinson - H.P. McKeanJr., Weighted trigonometric approximation on R1 with application to the germ field of a stationary Gaussian noise, Acta Math.112 (1964), pp. 99-143. Zbl0126.13901MR163111
  20. [20] J. Löffelholz, Euclidean fields I, II and III, Publication Joint Insitute for Nuclear Research DubnaE512779, 12780 and 12781 (1979). 
  21. [21] J. Löffelholz, The Markov property of the free Euclidean electromagnetic field, Karl Marx Universität preprint 1982. MR646168
  22. [22] H.P. Mckean, Brownian motion with a several dimensional time, Theory Probab. Appl.8 (1963), pp. 335-354. Zbl0124.08702MR157407
  23. [23] E. Nelson, The free Markov field, J. Funct. Anal.12 (1973), pp. 211-227. Zbl0273.60079MR343816
  24. [24] Y. Okabe, Stationary Gaussian processes with Markovian property and M. Sato's hyperfunctions, Japan. J. Math.41 (1973), pp. 66-22. Zbl0302.60025MR341590
  25. [25] Y. Okabe, On the germ field of stationary Gaussian processes with Markovian property, J. Math. Soc. Japan28 (1976), pp. 86-95. Zbl0318.60041MR388520
  26. [26] E. Osipov, Markov properties of solutions of stochastic partial differential equations in a finite volume, Novosibirsk preprint 1989. MR1190504
  27. [27] D. Preiss - R. Kotecky, Markov property of generalized random fields, Seventh Winter School, Czechoslovakia1979. Zbl0494.60099
  28. [28] M. Röckner, Markov property of generalized field and axiomatic potential theory, Math. Ann.264 (1983), pp. 153-177. Zbl0519.60047MR711875
  29. [29] M. Röckner, Generalized Markov Fields and Dirichlet Forms, Acta Appl. Math.3 (1985), pp. 285-311. Zbl0588.60044MR790552
  30. [30] Yu A. Rozanov, Markov Randon Fields, Springer1982. Zbl0498.60057MR676644
  31. [31] Yu A. Rozanov, Boundary problems for stochastic partial differential equations, Proc. BiBoS, S. Albeverio, Ph. Blanchard, L. Streit Edts., Lecture Notes in Math. 1250, Springer1987. Zbl0623.60076MR897810
  32. [32] Yu A. Rozanov, Some Functional Models for Random Fields, Chapel Hill preprint 1988. 
  33. [33] E.M. Stein - G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press1971. Zbl0232.42007MR304972
  34. [34] D. Surgailis, On the Markov property of a class of linear infinity divisible fields, Z. Warsch. verw. Geb.49 (1979), pp. 293-311. Zbl0419.60059MR547830
  35. [35] D. Surgailis, On convariant stochastic differential equations and Markov property of their solutions, Istituto Fisico Università di Roma preprint 1979. 
  36. [36] H. Totoki, A method of construction of measures on function spaces and its applications to stochastic processes, Mem. Fac. Sci. Kyushu Univ. Ser. A15 (1961), pp. 178-190. Zbl0123.34802MR138127
  37. [37] E. Wong, Homogeneous Gauss-Markov random fields, Ann. Math. Stat.40 (1969), pp. 1625-1634. Zbl0198.22702MR263148
  38. [38] E. Wong - B. Hajek, Stochastics Processes in Engineering Systems, Springer1985. Zbl0545.60003MR787046
  39. [39] E. Wong - M. Zakai, Isotropic Gauss Markov Currents, Probab. Theory Related Fields82 (1989), pp. 137-154. Zbl0659.60120MR997434
  40. [40] E. Wong - M. Zakai, Spectral representation of isotropic random currents, Séminaire de Probabilités XXIII. J. Azéma, P. Meyer and M. Yor Eds. Lecture Notes in Math. 1372Springer1989. Zbl0739.60042MR1022934
  41. [41] Y. Yamasaki, Measures on infinite dimensional spaces, World Scientific1985. Zbl0591.28012MR999137
  42. [42] Te Hai Yao, Construction of quantum fields from Euclidean tensor field, J. Math. Phys.17 (1976), pp. 241-247. MR403496

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.