The inverse of a local operator preserves the Markov property
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1992)
- Volume: 19, Issue: 2, page 223-253
- ISSN: 0391-173X
Access Full Article
topHow to cite
topIwata, Koichiro. "The inverse of a local operator preserves the Markov property." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 19.2 (1992): 223-253. <http://eudml.org/doc/84124>.
@article{Iwata1992,
author = {Iwata, Koichiro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Markov property; generalized random field; electromagnetic field},
language = {eng},
number = {2},
pages = {223-253},
publisher = {Scuola normale superiore},
title = {The inverse of a local operator preserves the Markov property},
url = {http://eudml.org/doc/84124},
volume = {19},
year = {1992},
}
TY - JOUR
AU - Iwata, Koichiro
TI - The inverse of a local operator preserves the Markov property
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1992
PB - Scuola normale superiore
VL - 19
IS - 2
SP - 223
EP - 253
LA - eng
KW - Markov property; generalized random field; electromagnetic field
UR - http://eudml.org/doc/84124
ER -
References
top- [1] S. Albeverio - R. Høegh-Krohn - H. Holden - T. Kolsrud, Representation and construction of multiplicative noise, J. Funct. Anal.87 (1989), pp. 250-272. Zbl0696.60012MR1026853
- [2] S. Albeverio - R. Høegh-Krohn - K. Iwata, Covariant markovian random fields in four space-time dimensions with nonlinear electromagnetic interaction, Proc. Dubna Conference 1987. P. Exner, P. Seba ed. Lecture Notes in Phys.324Springer1989. Zbl0722.60044MR1009842
- [3] S. Albeverio - R. Høegh-Krohn - D. Surgailis, Some Euclidean Integer-Valued Random Field with Markov Properties, Ruhr-Universität preprint 1990 to appear in Memorial Volume for R. Høegh-Krohn, Cambridge University Press. Zbl0782.60074MR1190493
- [4] S. Albeverio - K. Iwata - T. Kolsrud, Random fields as solutions of the inhomogeneous quaternionic Cauchy-Riemann equation. I. Invariance and analytic continuation, Comm. Math. Phys.132 (1990), pp. 555-580. Zbl0711.60058MR1069837
- [5] S. Albeverio - K. Iwata - T. Kolsrud, Homogeneous Markov generalized vector fields and quantum fields over 4-dimensional space-time, to appear in Proc. Trento. Da Prato, Tubaro Edts. Lecture Notes in Math.Springer. Zbl0797.60092MR1222685
- [6] S. Albeverio - B. Zegarlinski, Global Markov Property: results and open problems, to appear in Memorial Volume for R. Høegh-Krohn, Cambridge University Press. MR1190533
- [7] J.L. Doob, The elementary Gaussian processes, Ann. Math. Statist.15 (1944), pp. 229-282. Zbl0060.28907MR10931
- [8] E.B. Dynkin, Markov processes and random fields, Bull. Amer. Math. Soc.3 (1980), pp. 975-999. Zbl0519.60046MR585179
- [9] I.M. Gel'fand - N. Ya.VILENKIN, Generalized functions, Vol. 4 English translation, Academic Press1964. MR173945
- [10] V. Georgescu - R. Purice, On the Markov property for the free Euclidean electromagnetic field, Lett. Math. Phys.4 (1980), pp. 465-467. Zbl0464.58022MR599708
- [11] L. Gross, The free euclidean Proca and electromagnetic fields, Proc. International Conference Cumberland Lodge. Functional integration and its applications. 1974Clorendon Press1975. MR475437
- [12] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer1983. Zbl0521.35001
- [13] K. Itô, Foundations of stochastic differential equations in infinite dimensional spaces, CBNS - NSF Regional Conf. Series in Appl. Math. Vol. 47SIAM1984. Zbl0547.60064MR771478
- [14] K. Iwata, On Linear Maps Preserving Markov Properties and Applications to Multicomponent Generalized Random Fields, Dissertation Ruhr-Universität Bochum1990. Zbl0783.60050
- [15] T. Kolsrud, On the Markov property for certain Gaussian random fields, Probab. Theory Related Fields74 (1986), pp. 393-402. Zbl0592.60039MR873886
- [16] S. Kotani, On a Markov property for stationary Gaussian processes with a multidimensional parameter, Proc. 2nd Japan USSR Symposium Probability, Lecture Notes in Math. 330 Springer1977. Zbl0335.60031MR443055
- [17] H. Künsch, Gaussian Markov random fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math.26 (1979), pp. 53-73. Zbl0408.60038MR539773
- [18] S. Kusuoka, Markov fields and local operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math.26 (1979), pp. 199-212. Zbl0418.60053MR550683
- [19] N. Levinson - H.P. McKeanJr., Weighted trigonometric approximation on R1 with application to the germ field of a stationary Gaussian noise, Acta Math.112 (1964), pp. 99-143. Zbl0126.13901MR163111
- [20] J. Löffelholz, Euclidean fields I, II and III, Publication Joint Insitute for Nuclear Research DubnaE512779, 12780 and 12781 (1979).
- [21] J. Löffelholz, The Markov property of the free Euclidean electromagnetic field, Karl Marx Universität preprint 1982. MR646168
- [22] H.P. Mckean, Brownian motion with a several dimensional time, Theory Probab. Appl.8 (1963), pp. 335-354. Zbl0124.08702MR157407
- [23] E. Nelson, The free Markov field, J. Funct. Anal.12 (1973), pp. 211-227. Zbl0273.60079MR343816
- [24] Y. Okabe, Stationary Gaussian processes with Markovian property and M. Sato's hyperfunctions, Japan. J. Math.41 (1973), pp. 66-22. Zbl0302.60025MR341590
- [25] Y. Okabe, On the germ field of stationary Gaussian processes with Markovian property, J. Math. Soc. Japan28 (1976), pp. 86-95. Zbl0318.60041MR388520
- [26] E. Osipov, Markov properties of solutions of stochastic partial differential equations in a finite volume, Novosibirsk preprint 1989. MR1190504
- [27] D. Preiss - R. Kotecky, Markov property of generalized random fields, Seventh Winter School, Czechoslovakia1979. Zbl0494.60099
- [28] M. Röckner, Markov property of generalized field and axiomatic potential theory, Math. Ann.264 (1983), pp. 153-177. Zbl0519.60047MR711875
- [29] M. Röckner, Generalized Markov Fields and Dirichlet Forms, Acta Appl. Math.3 (1985), pp. 285-311. Zbl0588.60044MR790552
- [30] Yu A. Rozanov, Markov Randon Fields, Springer1982. Zbl0498.60057MR676644
- [31] Yu A. Rozanov, Boundary problems for stochastic partial differential equations, Proc. BiBoS, S. Albeverio, Ph. Blanchard, L. Streit Edts., Lecture Notes in Math. 1250, Springer1987. Zbl0623.60076MR897810
- [32] Yu A. Rozanov, Some Functional Models for Random Fields, Chapel Hill preprint 1988.
- [33] E.M. Stein - G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press1971. Zbl0232.42007MR304972
- [34] D. Surgailis, On the Markov property of a class of linear infinity divisible fields, Z. Warsch. verw. Geb.49 (1979), pp. 293-311. Zbl0419.60059MR547830
- [35] D. Surgailis, On convariant stochastic differential equations and Markov property of their solutions, Istituto Fisico Università di Roma preprint 1979.
- [36] H. Totoki, A method of construction of measures on function spaces and its applications to stochastic processes, Mem. Fac. Sci. Kyushu Univ. Ser. A15 (1961), pp. 178-190. Zbl0123.34802MR138127
- [37] E. Wong, Homogeneous Gauss-Markov random fields, Ann. Math. Stat.40 (1969), pp. 1625-1634. Zbl0198.22702MR263148
- [38] E. Wong - B. Hajek, Stochastics Processes in Engineering Systems, Springer1985. Zbl0545.60003MR787046
- [39] E. Wong - M. Zakai, Isotropic Gauss Markov Currents, Probab. Theory Related Fields82 (1989), pp. 137-154. Zbl0659.60120MR997434
- [40] E. Wong - M. Zakai, Spectral representation of isotropic random currents, Séminaire de Probabilités XXIII. J. Azéma, P. Meyer and M. Yor Eds. Lecture Notes in Math. 1372Springer1989. Zbl0739.60042MR1022934
- [41] Y. Yamasaki, Measures on infinite dimensional spaces, World Scientific1985. Zbl0591.28012MR999137
- [42] Te Hai Yao, Construction of quantum fields from Euclidean tensor field, J. Math. Phys.17 (1976), pp. 241-247. MR403496
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.