Approximation by proper holomorphic maps into convex domains

Avner Dor

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 1, page 147-162
  • ISSN: 0391-173X

How to cite

top

Dor, Avner. "Approximation by proper holomorphic maps into convex domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.1 (1993): 147-162. <http://eudml.org/doc/84141>.

@article{Dor1993,
author = {Dor, Avner},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {proper holomorphic maps; convex domain},
language = {eng},
number = {1},
pages = {147-162},
publisher = {Scuola normale superiore},
title = {Approximation by proper holomorphic maps into convex domains},
url = {http://eudml.org/doc/84141},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Dor, Avner
TI - Approximation by proper holomorphic maps into convex domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 1
SP - 147
EP - 162
LA - eng
KW - proper holomorphic maps; convex domain
UR - http://eudml.org/doc/84141
ER -

References

top
  1. [BK] S. Bell - S. Krantz, Smoothness to the boundary of conformal maps, Rocky Mountain J. Math., 17, No. 1, (1987), 23-40. Zbl0626.30005MR882882
  2. [D1] A. Dor, Proper holomorphic maps between balls in one co-dimension, Ark. Mat., 28, No. 1, (1990), 49-100. Zbl0699.32014MR1049642
  3. [D2] A. Dor, Lifting of proper holomorphic maps, preprint. 
  4. [D3] A. Dor, Continuous proper holomorphic maps into bounded domains, preprint. MR1162088
  5. [F1] F. Forstneri, Extending proper holomorphic mappings of positive co-dimension, Invent. Math., 95, No. 1, (1989), 31-61. Zbl0633.32017MR969413
  6. [F2] F. Forstneri, Embedding strictly pseudoconvex domains into balls, American Math. Soc., 295, (1986), 347-368. Zbl0594.32024MR831203
  7. [FG] F. Forstneri - J. Globevnik, Discs in pseudoconvex domains, preprint (1991). MR1144617
  8. [G] J. Globevnik, Relative embeddings of discs into convex domains, Invent. Math., 98, No. 2, (1989), 331-350. Zbl0681.32019MR1016268
  9. [H] M. Hakim, Applications holomorphes propres continues de domaines strictement pseudoconvexes de Cn dans la boule unité de Cn+1, Duke Math. J., 60, No.1, (1990), 115-133. Zbl0694.32010MR1047118
  10. [HS] M. Hakim - N. Sibony, Fonction holomorphes sur la boule unité de Cn, Invent. Math., 67, (1982), 213-222. Zbl0475.32007MR665153
  11. [K] S. Krantz, Function theory of several complex variables, John Wiley and Sons, 1982. Zbl0471.32008MR635928
  12. [L] E. Løw, A construction of inner functions on the unit ball in Cp, Invent. Math., 67, (1982), 223-229. Zbl0528.32006MR665154
  13. [N] A. Noell - B. Stensønes, Proper holomorphic maps from weakly pseudoconvex domains, preprint. Zbl0716.32017MR1047757
  14. [Ra] M. Range, Holomorphic functions and integral representations in several complex variables, Springer-Verlag, New York, 1986. Zbl0591.32002MR847923
  15. [Ru] W. Rudin, Function theory in the unit ball of Cn, Springer-Verlag, New York, 1980. Zbl0495.32001MR601594
  16. [S] B. Stensønes, Proper holomorphic mappings from strongly pseudoconvex domains in C2 to the unit polydisc in C3, Math. Scand., 65, (1989), 129-139. Zbl0706.32010MR1051829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.