Convexly totally bounded and strongly totally bounded sets. Solution of a problem of Idzik

E. De Pascale; G. Trombetta; H. Weber

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 3, page 341-355
  • ISSN: 0391-173X

How to cite

top

De Pascale, E., Trombetta, G., and Weber, H.. "Convexly totally bounded and strongly totally bounded sets. Solution of a problem of Idzik." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.3 (1993): 341-355. <http://eudml.org/doc/84152>.

@article{DePascale1993,
author = {De Pascale, E., Trombetta, G., Weber, H.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {measure of non-convexly total boundedness; convexly totally bounded subsets of a topological linear space; fixed point property; Schauder conjecture},
language = {eng},
number = {3},
pages = {341-355},
publisher = {Scuola normale superiore},
title = {Convexly totally bounded and strongly totally bounded sets. Solution of a problem of Idzik},
url = {http://eudml.org/doc/84152},
volume = {20},
year = {1993},
}

TY - JOUR
AU - De Pascale, E.
AU - Trombetta, G.
AU - Weber, H.
TI - Convexly totally bounded and strongly totally bounded sets. Solution of a problem of Idzik
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 3
SP - 341
EP - 355
LA - eng
KW - measure of non-convexly total boundedness; convexly totally bounded subsets of a topological linear space; fixed point property; Schauder conjecture
UR - http://eudml.org/doc/84152
ER -

References

top
  1. [A/B] C.D. Aliprantis - O. Burkinshaw, Locally solid Riesz spaces, Academic Press, New York, 1978. Zbl0402.46005MR493242
  2. [A/DP] J. Appell - E. De Pascale, Su alcuni parametri connessi con la misura di non compattezza di Hausdorff in spazi di funzioni misurabili, Boll. Un. Mat. Ital. (6), 3-B (1984), 497-515. Zbl0507.46025MR762715
  3. [B/G] J Banaš - K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Appl. Math., Marcel Dekker, 60, New York and Basel, 1980. Zbl0441.47056MR591679
  4. [B/R] J Banaš - J. Ribeiro, On measures of weak noncompactness, Ann. Mat. Pura Appl.151 (1988), 213-224. Zbl0653.47035MR964510
  5. [D] G. Darbo, Punti uniti in trasformazioni a condominio non compatto, Rend. Sem. Mat. Univ.Padova, 24 (1955), 84-92. Zbl0064.35704MR70164
  6. [DP/T1] E. De Pascale - G. Trombetta, Fixed points and best approximation for convexly condensing functions in topological vector spaces, Rend. Mat. Appl., (7), 11 (1991), 175-186. Zbl0724.47034MR1112371
  7. [DP/T2] E. De Pascale - G. Trombetta, A theorem on best approximations in topological vector spaces, Proceedings of the ASI, 1991. Zbl0751.41022
  8. [G/G/M] I.T. Gohberg - L.S. Goldenštein - A.S. Markus, Investigation of some properties of bounded linear operators in connection with their q-norms, Uchen. Zap. Kishinevsk UN-TA, 29 (1957), 29-36. 
  9. [G] A. Granas, KKM-maps and their applications to nonlinear problems, The Scottish Book, Ed., R.D. Mauldin, Birkhäuser, Basel and Boston, Mass., 1981, 45-61. 
  10. [H1] O Hadzič, Fixed point theory in topological vector spaces, University of Novi Sad, 1984. Zbl0576.47030MR789224
  11. [H2] O Hadzič, Some properties of measures of non compactness in paranormed spaces, Proc. Amer. Math. Soc., 102 (1988), 843-849. Zbl0653.47034MR934854
  12. [I1] A. Idzik, On γ-almost fixed point theorem. The single valued case, Bull. Polish Acad. Sci. Math., 35 (1987), 461-464. Zbl0663.47036
  13. [I2] A. Idzik, Almost fixed point theorems, Proc. Amer. Math. Soc., 104 (1988), 779-784. Zbl0691.47046MR964857
  14. [J] H. Jarchow, Locally convex spaces, B.G. Teubner, Stuttgart, 1981. Zbl0466.46001MR632257
  15. [K] C. Krauthausen, Der Fixpunktsatz von Schauder in nicht notwendig konvexen Räumen sowie Anwendungen auf Hammerstein'sche Gleichungen, Dokt. Diss. THAachen, 1976. 
  16. [Ku] K. Kuratowski, Sur les espaces complets, Fund. Math., 15 (1930), 301-309. Zbl56.1124.04JFM56.1124.04
  17. [R] J. Roberts, Pathological compact convex set in the spaces Lp, 0&lt;p&lt;1, The Altgeld Book1975/ 76, University of Illinois. 
  18. [Ro] S. Rolewicz, Metric linear spaces, PWN - Polish Scientific Publishers, Warsawa, 1984. Zbl0573.46001MR802450
  19. [Rz] B. Rzepecki, Remarks on Schauder's fixed point principle and its applications, Bull. Polish Acad. Sci. Math., 27, 6 (1979), 473-479. Zbl0435.47057MR560183
  20. [S] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math., 2 (1930), 171-180. Zbl56.0355.01JFM56.0355.01
  21. [T] A. Tychonoff, Ein Fixpunktsatz, Math. Ann., 111 (1935), 767-776. Zbl0012.30803MR1513031JFM61.1195.01
  22. [T/W] G. Trombetta - H. Weber, The Hausdorff measure of noncompactness for balls of F-normed linear spaces and for subsets of L0, Boll. Un. Mat. Ital. (6), 5-C (1986), 213-232. Zbl0657.47050MR897195
  23. [W] H. Weber, Compact convex sets in non locally convex linear spaces, Note Mat. special volume to the memory of G. Köthe (in print). Zbl0846.46004MR1258580

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.