On a class of unsolvable operators
Massimo Cicognani; Luisa Zanghirati
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)
- Volume: 20, Issue: 3, page 357-369
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] F. Cardoso, A necessary condition of Gevrey solvability for differential operators with double characteristics. Comm. Partial Differential Equations, 14 (1989), 981-1009. Zbl0719.35001MR1017059
- [2] F. Cardoso - F. Treves, A necessary condition of local solvability for pseudodifferential equations with double characteristics. Ann. Inst. Fourier (Grenoble), 24:1 (1974), 225-292. Zbl0273.35058MR350233
- [3] L. Cattabriga - L. Rodino - L. Zanghirati, Analytic-Gevrey hypoellipticity for a class of pseudodifferential operators with multiple characteristics. Comm. Partial Differential Equations, 15 (1989), 81-96. Zbl0704.35035MR1032624
- [4] L. Cattabriga - L. Zanghirati, Fourier integral operators of infinite order on Gevrey spaces. Applications to the Cauchy problem for certain hyperbolic operators. J. Math. Kyoto Univ., 30 (1990), 149-192. Zbl0725.35113MR1041717
- [5] J.J. Duistermaat - J. Sjöstrand, A global construction for pseudo-differential operators with non-involutive characteristics. Invent. Math., 20 (1973), 209-225. Zbl0282.35071MR344942
- [6] Y. Egorov, On necessary conditions for local solvability of pseudodifferential equations of principal type. Trudy Moskov. Mat. Obshch., 24 (1971), 24-42 (Russian); Trans. Moscow Math. Soc., 24 (1971), 632-635. Zbl0296.35071
- [7] R. Goldman, A necessary condition for local solvability of a pseudodifferential equation having multiple characteristics. J. Differential Equations, 19 (1975), 176-200. Zbl0305.35085MR380171
- [8] T. Gramchev, Non solvability for analytic partial differential operators with multiple complex characteristic. To appear.
- [9] T. Gramchev, Powers of Mizohata type operators in Gevrey classes. Boll. Un. Mat. Ital. B (7) 1, 1991. Zbl0809.47043MR1110672
- [10] V.V. Grušin, On a class of elliptic pseudo differential operators degenerate on a submanifold. Mat. Sb., 84 (1977), 163-195; Math. USSR-Sb., 13 (1971), 155-185. MR283630
- [11] N. Hanges, Almost Mizohata operators. Trans. Amer. Math. Soc., 293 (1986), 663-675. Zbl0606.35010MR816318
- [12] L. Hörmander, The analysis of linear partial differential operators, Voll. I-IV. Springer-Verlag, Berlin, 1983-85. Zbl0521.35002
- [13] H. Komatsu, Ultradistributions I, structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 20 (1973), 25-105. Zbl0258.46039MR320743
- [14] H. Ninomiya, Necessary and sufficient conditions for the local solvability of the Mizohata equations. J. Math. Kyoto Univ., 28:4 (1988), 593-603. Zbl0692.35026MR981095
- [15] L. Nirenberg - F. Treves, On local solvability of linear partial differential equations, I-Necessary conditions. Comm. Pure Appl. Math., 23 (1970), 1-38. Zbl0191.39103MR264470
- [16] P. Popivanov, On the local solvability of a class of partial differential equations with double characteristics. Trudy Sem. Petrovsk.1, (1975), 237-278 (Russian); Amer. Math. Soc. Transl., 118:2 (1982), 51-89. Zbl0495.35083MR427811
- [17] L. Rodino - A. Corli, Gevrey solvability for hyperbolic operators with constant multiplicity. Recent developments in hyperbolic equations, Proc. of Conference "Hyperbolic Equations" - Pisa1987, LongmanHarlow, 1988. Zbl0739.35002MR984375
- [18] L. Rodino - L. Zanghirati, Pseudodifferential operators with multiple characteristics, and Gevrey singularities, Comm. Partial Differential Equations, 11 (1986), 673-711. Zbl0597.58034MR837927
- [19] F. Treves, Introduction to pseudodifferential and Fourier integral operators, Vol. I, Plenum Press, New York, 1980. Zbl0453.47027MR597145
- [20] F. Treves, Remarks about certain first order linear PDE in two variables. Comm. Partial Differential Equations, 5 (1980), 381-425. Zbl0519.35008MR567779
- [21] L. Zanghirati, Pseudodifferential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara, Sez. VII, Sc. Mat., 31 (1985), 197-219. Zbl0601.35110MR841860