Hausdorff combing of groups and π 1 for universal covering spaces of closed 3-manifolds

V. Poénaru; C. Tanasi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1993)

  • Volume: 20, Issue: 3, page 387-414
  • ISSN: 0391-173X

How to cite

top

Poénaru, V., and Tanasi, C.. "Hausdorff combing of groups and $\pi ^\infty _1$ for universal covering spaces of closed 3-manifolds." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 20.3 (1993): 387-414. <http://eudml.org/doc/84155>.

@article{Poénaru1993,
author = {Poénaru, V., Tanasi, C.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {simple connectivity at infinity of universal covering space; Gromov geometry of the fundamental group of a closed 3-manifold; Cayley graph; combing},
language = {eng},
number = {3},
pages = {387-414},
publisher = {Scuola normale superiore},
title = {Hausdorff combing of groups and $\pi ^\infty _1$ for universal covering spaces of closed 3-manifolds},
url = {http://eudml.org/doc/84155},
volume = {20},
year = {1993},
}

TY - JOUR
AU - Poénaru, V.
AU - Tanasi, C.
TI - Hausdorff combing of groups and $\pi ^\infty _1$ for universal covering spaces of closed 3-manifolds
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1993
PB - Scuola normale superiore
VL - 20
IS - 3
SP - 387
EP - 414
LA - eng
KW - simple connectivity at infinity of universal covering space; Gromov geometry of the fundamental group of a closed 3-manifold; Cayley graph; combing
UR - http://eudml.org/doc/84155
ER -

References

top
  1. [B] W. Ballmann - E. Ghys - A. Haefliger - P. De La Harpe - E. Salem - R. Strebel - M. Troyanov, Sur les groupes hyperboliques, d'aprés M. Gromov (Editeurs: E. Ghys e P. de la Harpe), Birkhauser1990. 
  2. [CDP] M. Coornaert - T. Delzant - A. Papadopoulos, Notes sur les groupes hyperboliques de Gromov (châpitres 1 à 12), Publication de Irma1990. MR1075994
  3. [CEHPT] J.W. Cannon - D.B.A. Epstein - D.F. Holt - M.S. Paterson - W.P. Thurston, Word processing and group theory (Preprint). 
  4. [Da1] M.W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean spaces, Ann. of Math.117 (1983), 293-324. Zbl0531.57041MR690848
  5. [Da2] M.W. Davis, Private communication. 
  6. [DaS] M.W. Davis - M. Shapiro, Coxeter groups are almost convex, Osu preprint, 90-12. MR1116209
  7. [Do] M. Domergue, Extension du lemme de Dehn, C.R. Acad. Sci.286 (1978), 885-887. Zbl0384.57003MR500908
  8. [Gr1] M. Gromov, Infinite groups as geometric objects, Proceedings ICM, Warszewa (1983), 385-392. Zbl0586.20016MR804694
  9. [Gr2] M. Gromov, Hyperbolic groups, in Essays in group theory, S.M. Gersten Ed., MSRI Publication8 (1987), 75-263. Zbl0634.20015MR919829
  10. [P] C.D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots, Ann. of Math.1 (1957), 1-26. Zbl0078.16402MR90053
  11. [Po1] V. Poénaru, Infinite processes and the 3-dimensional Poincaré Conjecture, I (the collapsible pseudo-spine representation theorem), Topology31 (1992), 625-646. Zbl0777.57013MR1174263
  12. [Po2] V. Poénaru, Killing handles of index one stably and π∞ 1, Duke Math. J.73 (1991), 431-447. Zbl0738.57009
  13. [Po3] V. Poénaru, Almost convex groups, Lipschitz combing, and π∞ 1 for universal covering spaces of closed 3-manifolds, J. Differential Geom.35 (1992), 103-130. Zbl0777.57001
  14. [ShWhi] A. Shapiro - J.H.C. Whitehead, A proof and extension of Dehn's Lemma, Bull. Amer. Math. Soc.64 (1958), 174-178. Zbl0084.19104MR103474
  15. [SullTh] D. Sullivan - W. Thurston, Manifolds with canonical coordinate charts, some examples, Enseign. Math.29 (1983), 15-25. Zbl0529.53025MR702731
  16. [Th] W.P. Thurston, The geometry and topology of 3-manifolds, to appear. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.