Solutions faibles globales pour un modèle d'écoulements diphasiques

Yue-Jun Peng

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)

  • Volume: 21, Issue: 4, page 523-540
  • ISSN: 0391-173X

How to cite

top

Peng, Yue-Jun. "Solutions faibles globales pour un modèle d'écoulements diphasiques." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 21.4 (1994): 523-540. <http://eudml.org/doc/84191>.

@article{Peng1994,
author = {Peng, Yue-Jun},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {two-phase leaking; global weak solutions; Riemann problem},
language = {fre},
number = {4},
pages = {523-540},
publisher = {Scuola normale superiore},
title = {Solutions faibles globales pour un modèle d'écoulements diphasiques},
url = {http://eudml.org/doc/84191},
volume = {21},
year = {1994},
}

TY - JOUR
AU - Peng, Yue-Jun
TI - Solutions faibles globales pour un modèle d'écoulements diphasiques
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1994
PB - Scuola normale superiore
VL - 21
IS - 4
SP - 523
EP - 540
LA - fre
KW - two-phase leaking; global weak solutions; Riemann problem
UR - http://eudml.org/doc/84191
ER -

References

top
  1. [1] S. Benzoni-Gavage, Thèse. Université de Lyon1, 1991. 
  2. [2] S. Benzoni-Gavage - D. Serre, Compacité par compensation pour une classe de systèmes hyperboliques de p lois de conservation (p≽3). Prépublication, n. 59 (1992), ENSL. 
  3. [3] R.J. Diperna, Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal.82, (1983), 27-70. Zbl0519.35054MR684413
  4. [4] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl., Math., 18 (1965), 697-715. Zbl0141.28902MR194770
  5. [5] T.P. Liu, Initial-boundary-value problems for gas dynamics. Arch. Rational Mech. Anal., 64 (1977), 137-168. Zbl0357.35016MR433017
  6. [6] Li Ta-Tsien - Peng Yue-JUN, Problème de Riemann généralisé pour une sorte de systèmes des câbles, Mathematica Portugalia50 (1993), 407-434. Zbl0805.35086MR1279158
  7. [7] Li Ta-Tsien - YU WEN-CI, Boundary value problems for quasilinear hyperbolic systems. Duke University, Mathematics Series V, 1985. Zbl0627.35001MR823237
  8. [8] T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. Ser. A Math. Sci., 44 (1968), 642-646. Zbl0167.10301MR236526
  9. [9] T. Nishida - J. Smoller, Mixte problem for nonlinear conservation laws, J. Differential Equations, 23 (1977), 244-269. Zbl0303.35052MR427852
  10. [10] D. Serre, Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation, J. Differential Equations, 68 (1987), 137-168. Zbl0627.35062MR892021
  11. [11] D. Serre, Temple's fields and integrability of hyperbolic systems of conservation laws, Prépublication, n. 72 (1992), ENSL. 
  12. [12] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795. Zbl0559.35046MR716850
  13. [13] D.H. Wagner, Equivalence of the Euler and Lagrangian Equations of Gas Dynamics for Weak Solutions, J. Differential Equations, 68 (1987), 118-136. Zbl0647.76049MR885816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.