Solutions faibles globales pour un modèle d'écoulements diphasiques
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1994)
- Volume: 21, Issue: 4, page 523-540
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [1] S. Benzoni-Gavage, Thèse. Université de Lyon1, 1991.
- [2] S. Benzoni-Gavage - D. Serre, Compacité par compensation pour une classe de systèmes hyperboliques de p lois de conservation (p≽3). Prépublication, n. 59 (1992), ENSL.
- [3] R.J. Diperna, Convergence of approximate solutions to conservation laws. Arch. Rational Mech. Anal.82, (1983), 27-70. Zbl0519.35054MR684413
- [4] J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl., Math., 18 (1965), 697-715. Zbl0141.28902MR194770
- [5] T.P. Liu, Initial-boundary-value problems for gas dynamics. Arch. Rational Mech. Anal., 64 (1977), 137-168. Zbl0357.35016MR433017
- [6] Li Ta-Tsien - Peng Yue-JUN, Problème de Riemann généralisé pour une sorte de systèmes des câbles, Mathematica Portugalia50 (1993), 407-434. Zbl0805.35086MR1279158
- [7] Li Ta-Tsien - YU WEN-CI, Boundary value problems for quasilinear hyperbolic systems. Duke University, Mathematics Series V, 1985. Zbl0627.35001MR823237
- [8] T. Nishida, Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad. Ser. A Math. Sci., 44 (1968), 642-646. Zbl0167.10301MR236526
- [9] T. Nishida - J. Smoller, Mixte problem for nonlinear conservation laws, J. Differential Equations, 23 (1977), 244-269. Zbl0303.35052MR427852
- [10] D. Serre, Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservation, J. Differential Equations, 68 (1987), 137-168. Zbl0627.35062MR892021
- [11] D. Serre, Temple's fields and integrability of hyperbolic systems of conservation laws, Prépublication, n. 72 (1992), ENSL.
- [12] B. Temple, Systems of conservation laws with invariant submanifolds, Trans. Amer. Math. Soc., 280 (1983), 781-795. Zbl0559.35046MR716850
- [13] D.H. Wagner, Equivalence of the Euler and Lagrangian Equations of Gas Dynamics for Weak Solutions, J. Differential Equations, 68 (1987), 118-136. Zbl0647.76049MR885816