L 2 estimates for pseudodifferential operators

A. Boulkhemair

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 1, page 155-183
  • ISSN: 0391-173X

How to cite

top

Boulkhemair, A.. "$L^2$ estimates for pseudodifferential operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 155-183. <http://eudml.org/doc/84197>.

@article{Boulkhemair1995,
author = {Boulkhemair, A.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {-estimates; Fourier transform; Besov space; symbol},
language = {eng},
number = {1},
pages = {155-183},
publisher = {Scuola normale superiore},
title = {$L^2$ estimates for pseudodifferential operators},
url = {http://eudml.org/doc/84197},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Boulkhemair, A.
TI - $L^2$ estimates for pseudodifferential operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 155
EP - 183
LA - eng
KW - -estimates; Fourier transform; Besov space; symbol
UR - http://eudml.org/doc/84197
ER -

References

top
  1. [1] R. Coifman - Y. Meyer, Au delà des opérateurs pseudodifférentiels. Astérisque57, Société Mathématique de France, 1978. Zbl0483.35082MR518170
  2. [2] A. Boulkhemair, Opérateurs paradifférentiels et conjugaison par des opérateurs intégraux de Fourier. Thèse de 3ème cycle, Orsay, 1984. 
  3. [3] G. Bourdaud - Y. Meyer, Inégalités L2 précisées pour la classe S00,0. Bull. Soc. Math. France116 (1988), 401-412. Zbl0693.35166MR1005386
  4. [4] T. Muramatu, Estimates for the norm of pseudodifferential operators by means of Besov spaces. In "Pseudodifferential Operators", Proceedings of a conference held in Oberwolfach, February 2-8, 1986, Lecture Notes in Mathematics, 1256, Springer, Berlin, 1987. Zbl0638.35087MR897785
  5. [5] H. Triebel, Interpolation theory, Function spaces, Differential operators. North Holland, 1978. Zbl0387.46032MR503903
  6. [6] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal.58 (1975), no. 3, 181-205. Zbl0343.35056MR390516
  7. [7] I.L. Hwang, On the L2 bounded ness of pseudodifferential operators. Trans. Amer. Math. Soc.302 (1987), 55-76. Zbl0651.35089MR887496
  8. [8] J. Bergh - J. Löftröm, Interpolation spaces. Springer, Berlin, 1976. Zbl0344.46071
  9. [9] A. Boulkhemair, On canonical transformations of paradifferential operators. Comm. Partial Differential Equations18 (1993), 917-964. Zbl0786.35157MR1218524
  10. [10] M. Sugimoto, Lp bounded ness of pseudodifferential operators satisfying Besov estimates I. J. Math. Soc. Japan, 40, 1988, 105-122. Zbl0621.47046MR917398
  11. [11] G. Bourdaud, Localisations des espaces de Besov. Studia Math.90 (1988), 153-163. Zbl0611.46037MR954169

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.