Degenerate variational inequalities with gradient constraints

Hi Jun Choe; Yong Sun Shim

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 1, page 25-53
  • ISSN: 0391-173X

How to cite

top

Choe, Hi Jun, and Shim, Yong Sun. "Degenerate variational inequalities with gradient constraints." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.1 (1995): 25-53. <http://eudml.org/doc/84199>.

@article{Choe1995,
author = {Choe, Hi Jun, Shim, Yong Sun},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {regularity; gradient constraints; strictly convex function; variational inequality},
language = {eng},
number = {1},
pages = {25-53},
publisher = {Scuola normale superiore},
title = {Degenerate variational inequalities with gradient constraints},
url = {http://eudml.org/doc/84199},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Choe, Hi Jun
AU - Shim, Yong Sun
TI - Degenerate variational inequalities with gradient constraints
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 1
SP - 25
EP - 53
LA - eng
KW - regularity; gradient constraints; strictly convex function; variational inequality
UR - http://eudml.org/doc/84199
ER -

References

top
  1. [Br1] H. Brezis - D. Kinderlehrer, The Smoothness of Solutions to Nonlinear Variational Inequalities. Indiana Univ. Math. J.23 (1974), 831-844. Zbl0278.49011MR361436
  2. [Br2] H. Brezis - G. Stampacchia, Sur la regularite de la solution d'inequations elliptiques. Bull. Soc. Math. France96 (1968), 153-180. Zbl0165.45601MR239302
  3. [Caf] L. Caffarelli - N.M. Riviere, The Lipschitz Character of the Stress Tensor When Twisting an Elastic and Plastic Bar. Arch. Rational Mech. Anal.69 (1979), 31-36. Zbl0399.73044MR513957
  4. [Can] P Cannarsa - H.M. Soner, On the Singularities of the Viscosity Solutions to Hamilton-Jacobi-Bellman Equations. Indiana Univ. Math. J.36 (1987), 501-524. Zbl0612.70016MR905608
  5. [Ch1] H.J. Choe, A regularity theory for a more general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Rational Mech. Anal.114 (1991), 383-394. Zbl0733.35024MR1100802
  6. [Ch2] H.J. Choe - Y.S. Shim, On the variational inequalities for certain convex function classes. To appear in J. Differential Equations. Zbl0809.49007MR1310935
  7. [Chi] M. Chipot, Variational Inequalities and Flow in Porous Media. Applied Mathematical Sciences, 52, Springer, Berlin1984. Zbl0544.76095MR747637
  8. [DiB] E. Di Benedetto, C1,α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal.7 (1983), 827-850. Zbl0539.35027
  9. [Eva] L.C. Evans, A Second Order Elliptic Equation with Gradient Constraint. Comm. Partial Differential Equations4 (1979), 555-572. Zbl0448.35036MR529814
  10. [Fle] W.H. Fleming - P.E. Souganidis, Asymptotic series and the method of vanishing viscosity. Indiana Univ. Math. J.35 (1986), 425-447. Zbl0573.35034MR833404
  11. [Ge1] C. Gerhardt, Regularity of Solutions of Nonlinear Variational Inequalities with a Gradient Bound as Constraint. Arch. Rational Mech. Anal.58 (1975), 309-317. Zbl0338.49009MR385296
  12. [Ge2] C. Gerhardt, Regularity of Solutions of Nonlinear Variational Inequalities. Arch. Rational Mech. Anal.52 (1973), 389-393. Zbl0277.49003MR377262
  13. [Gia] M. Giaquinta, Remarks on the regularity of weak solutions to some variational inequalities. Math. Z.177 (1981), 15-31. Zbl0438.35019MR611467
  14. [GT] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition. Springer-Verlag, Berlin1983. Zbl0562.35001MR737190
  15. [Har] P. Hartman - G. Stampacchia, On some nonlinear elliptic differential functional equations. Acta Math.115 (1971), 271-310. Zbl0142.38102MR206537
  16. [IK] H. Ishii - S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differential Equations8 (1983), 317-346. Zbl0538.35012MR693645
  17. [Is1] H. Ishii, Perron's method for Hamilton-Jacobi equations. Preprint. 
  18. [Is2] H. Ishii, A simple, direct proof of uniqueness for solutions of the Hamilton-Jacobi equations of Eikonal type. Proc. Amer. Math. Soc.100 (1987), 247-251. Zbl0644.35017MR884461
  19. [Jen] R. Jensen, Regularity for Elasto-Plastic Type Variational Inequality. Indiana Univ. Math. J.32 (1983), 407-423. Zbl0554.35052MR697646
  20. [Kry] N.V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations in a domain. (Russian). Izv. Akad. Nauk SSSR147 (1983), 75-108. Zbl0578.35024MR688919
  21. [Lad] O.A. Ladyzhenskaya - N.N. Ural'tzeva, Linear and Quasilinear Elliptic Equations. Academic Press, 1968. Zbl0164.13002MR244627
  22. [Lew] J. Lewis, Regularity of derivatives of solutions to certain degenerate elliptic equations. Indiana Univ. Math. J.32 (1983), 849-858. Zbl0554.35048MR721568
  23. [Li1] G. Lieberman, Local and boundary regularity for some variational inequalities involving p-Laplacian-type operators. Preprint. 
  24. [Li2] G. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tzeva for elliptic equations, Comm. Partial Differential Equations16 (1991), 311-362. Zbl0742.35028MR1104103
  25. [Li3] G. Lieberman, Regularity of solutions to some degenerate double obstacle problems. Preprint. MR1129339
  26. [Lin] F.H. Lin - Y. Li, Boundary C1,α regularity for variational inequalities. Comm. Pure Appl. Math.XLIV (1991), 715-732. Zbl0760.49022
  27. [Lind] P. Lindquist, Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity, Nonlinear Anal.12 (1988), 1245-1255. MR969502
  28. [Lio1] P.L. Lions, Generalized solutions of Hamilton-Jacobi equations. Research Notes in Mathematics, vol. 69, Pitman Advanced Publishing Program, 1982. Zbl0497.35001MR667669
  29. [Lio2] P.L. Lions, Resolution de Problèmes Elliptiques Quasilinéaires. Arch. Rational Mech. Anal.74 (1980), 335-353. Zbl0449.35036MR588033
  30. [Mic] J. Michael - W. Ziemer, Interior regularity for solutions to obstacle problems, Nonlinear Anal.10 (1986), 1427-1448. Zbl0603.49006MR869551
  31. [Mu1] J. Mu, Higher regularity of the solution to the p-Laplacian obstacle problem. Preprint. MR1165427
  32. [Mu2] J. Mu - W. Ziemer, Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations. Preprint. MR1113109
  33. [Nor] T. Norando, C1,α local regularity for a class of quasilinear elliptic variational inequalities. Boll. Un. Mat. Ital.5 (1986), 281-291. Zbl0639.49009
  34. [To1] P. Tolksdorff, Regularity for a more general class of quasi-linear elliptic equations. J. Differential Equations51 (1984), 126-150. Zbl0488.35017MR727034
  35. [To2] P. Tolksdorff, Everywhere regularity for some quasilinear systems with a lack of ellipticity. Ann. Mat. Pura Appl.134 (1983), 241-266. Zbl0538.35034MR736742
  36. [Uhl] K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems, Acta Math.138 (1977), 219-240. Zbl0372.35030MR474389
  37. [Wi] M. Wiegner, The C1,1 -character of solutions of second order elliptic equations with gradient constraints. Comm. Partial Differential Equations6 (1981), 361-371. Zbl0458.35035MR607553

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.