Compensated compactness and one-dimensional elastodynamics

Gustaf Gripenberg

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)

  • Volume: 22, Issue: 2, page 227-240
  • ISSN: 0391-173X

How to cite

top

Gripenberg, Gustaf. "Compensated compactness and one-dimensional elastodynamics." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 22.2 (1995): 227-240. <http://eudml.org/doc/84204>.

@article{Gripenberg1995,
author = {Gripenberg, Gustaf},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {one-dimensional elastodynamics; compensated compactness},
language = {eng},
number = {2},
pages = {227-240},
publisher = {Scuola normale superiore},
title = {Compensated compactness and one-dimensional elastodynamics},
url = {http://eudml.org/doc/84204},
volume = {22},
year = {1995},
}

TY - JOUR
AU - Gripenberg, Gustaf
TI - Compensated compactness and one-dimensional elastodynamics
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1995
PB - Scuola normale superiore
VL - 22
IS - 2
SP - 227
EP - 240
LA - eng
KW - one-dimensional elastodynamics; compensated compactness
UR - http://eudml.org/doc/84204
ER -

References

top
  1. [1] C.M. Dafermos, Estimates for conservation laws with little viscosity, SIAM J. Math. Anal.18 (1987), 409-421. Zbl0655.35055MR876280
  2. [2] R.J. Diperna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal.82 (1983), 27-70. Zbl0519.35054MR684413
  3. [3] L.C. Evans, Weak convergence methods for nonlinear partial differential equations. CBMS Regional Conf. Ser. in Math. 74, American Mathematical Society, Providence RI, 1990. Zbl0698.35004MR1034481
  4. [4] J.M. Greenberg - M. Rascle, Time-periodic solutions to systems of conservation laws, Arch. Rational Mech. Anal.115 (1991), 395-407. Zbl0769.35037MR1120854
  5. [5] P. Lin, Young measures and an application of compensated compactness to one-dimensional nonlinear elastodynamics. Trans. Amer. Math. Soc.329 (1992), 377-413. Zbl0761.35061MR1049615
  6. [6] C.S. Morawetz, An alternative proof of DiPerna's theorem. Comm. Pure Appl. Math.44 (1991), 1081-1090. Zbl0763.35056MR1127051
  7. [7] F. Murat, Compacite par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci.5 (1978), 489-507. Zbl0399.46022MR506997
  8. [8] J.A. Nohel - R.C. Rogers - A.E. Tzavares, Weak solutions for a nonlinear system in viscoelasticity. Comm. Partial Differential Equations13 (1988), 97-127. Zbl0635.73047MR914816
  9. [9] W. Rudin, Functional Analysis. McGraw-Hill, New York, 1973. Zbl0253.46001MR365062
  10. [10] D. Serre, La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace. J. Math. Pures Appl.65 (1986), 423-468. Zbl0601.35070MR881690
  11. [11] L. Tartar, Équations hyperboliques non linéaires. Séminaire Goulaouic-Schwartz (1977/1978), Ecole Polytch., Palaiseau, 1978. Zbl0385.35044MR504147
  12. [12] L. Tartar, Compensated campactness and applications to partial differential equations. In: "Nonlinear Analysis and Mechanics", Herriot- Watt Symposium IV (R.J. Knops, ed.), Research Notes in Mathematics, 4, Pitman Press, Edinburgh, 1979, pp. 136-192. Zbl0437.35004MR584398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.