Dirichlet polynomial approximations to zeta functions
E. Bombieri; J. B. Friedlander
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1995)
- Volume: 22, Issue: 3, page 517-544
- ISSN: 0391-173X
Access Full Article
topHow to cite
topReferences
top- [B] H. Bohr, Almost Periodic Functions. Translated by H. Cohn and F. Steinhardt, Chelsea, New York, 1951. Zbl0005.20303
- [Bo] E. Bombieri, Le Grand Crible dans la Théorie Analytique des Nombres. 2nd ed. Astérisque 18, Société Math. de France, Paris, 1987. Zbl0618.10042MR891718
- [H] E. Hille, Analytic Function Theory. Vol. II, Ginn and Co., Boston, 1962. Zbl0102.29401MR201608
- [S] A. Selberg, Old and new conjectures and results about a class of Dirichlet series. Proc. of the Amalfi Conference on Analytic Number Theory, September 1989, Univ. of Salerno1992, 367-385(= Collected Papers, vol. II, Springer-Verlag, Berlin, 1991, 47-63). Zbl0787.11037MR1220477
- [Si] C.L. Siegel, On the zeros of the Dirichlet L-functions. Ann. of Math., 46 (1945), 409-422(= Gesammelte Abhandlungen, Bd. III, Springer-Verlag, Berlin, 1966, 47-60). Zbl0063.07012MR13397
- [T] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function. 2nd ed., revised by D. R. Heath-Brown. Oxford University Press, Oxford, 1986. Zbl0601.10026MR882550