Extremal functions and contractive divisors in A - n

C. Horowitz; B. Korenblum; B. Pinchuk

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 1, page 179-191
  • ISSN: 0391-173X

How to cite

top

Horowitz, C., Korenblum, B., and Pinchuk, B.. "Extremal functions and contractive divisors in $A^{-n}$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.1 (1996): 179-191. <http://eudml.org/doc/84223>.

@article{Horowitz1996,
author = {Horowitz, C., Korenblum, B., Pinchuk, B.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Bergman space; contractive divisor; extremal functions},
language = {eng},
number = {1},
pages = {179-191},
publisher = {Scuola normale superiore},
title = {Extremal functions and contractive divisors in $A^\{-n\}$},
url = {http://eudml.org/doc/84223},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Horowitz, C.
AU - Korenblum, B.
AU - Pinchuk, B.
TI - Extremal functions and contractive divisors in $A^{-n}$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 1
SP - 179
EP - 191
LA - eng
KW - Bergman space; contractive divisor; extremal functions
UR - http://eudml.org/doc/84223
ER -

References

top
  1. [1] P. Davis, The Schwarz Function and Its Applications, Carus Math. Monographs, vol. 27, Math. Assoc. of America. Zbl0293.30001MR407252
  2. [2] P.L. Duren - D. Khavinson - H.S. Shapiro - C. Sundberg, Contractive zero divisors in Bergman spaces, Pacific J. Math157 (1993), 37-56. Zbl0739.30029MR1197044
  3. [3] H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine Angew. Math.422 (1991), 45-68. Zbl0734.30040MR1133317
  4. [4] L. Hormander, Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973. Zbl0685.32001MR1045639
  5. [5] K. Seip, Beurling type density theorems in the unit disck, Invent. Math.113 (1993), 21-39. Zbl0789.30025MR1223222
  6. [6] H.S. Shapiro, The Schwarz function and its generalization to higher dimensions, Univ. of Arkansas Lecture Notes in Math. Sciences, vol. 9, John Wiley and Sons, New York, 1992. Zbl0784.30036MR1160990

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.