Extremal functions and contractive divisors in
C. Horowitz; B. Korenblum; B. Pinchuk
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)
- Volume: 23, Issue: 1, page 179-191
- ISSN: 0391-173X
Access Full Article
topHow to cite
topHorowitz, C., Korenblum, B., and Pinchuk, B.. "Extremal functions and contractive divisors in $A^{-n}$." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.1 (1996): 179-191. <http://eudml.org/doc/84223>.
@article{Horowitz1996,
author = {Horowitz, C., Korenblum, B., Pinchuk, B.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Bergman space; contractive divisor; extremal functions},
language = {eng},
number = {1},
pages = {179-191},
publisher = {Scuola normale superiore},
title = {Extremal functions and contractive divisors in $A^\{-n\}$},
url = {http://eudml.org/doc/84223},
volume = {23},
year = {1996},
}
TY - JOUR
AU - Horowitz, C.
AU - Korenblum, B.
AU - Pinchuk, B.
TI - Extremal functions and contractive divisors in $A^{-n}$
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 1
SP - 179
EP - 191
LA - eng
KW - Bergman space; contractive divisor; extremal functions
UR - http://eudml.org/doc/84223
ER -
References
top- [1] P. Davis, The Schwarz Function and Its Applications, Carus Math. Monographs, vol. 27, Math. Assoc. of America. Zbl0293.30001MR407252
- [2] P.L. Duren - D. Khavinson - H.S. Shapiro - C. Sundberg, Contractive zero divisors in Bergman spaces, Pacific J. Math157 (1993), 37-56. Zbl0739.30029MR1197044
- [3] H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine Angew. Math.422 (1991), 45-68. Zbl0734.30040MR1133317
- [4] L. Hormander, Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973. Zbl0685.32001MR1045639
- [5] K. Seip, Beurling type density theorems in the unit disck, Invent. Math.113 (1993), 21-39. Zbl0789.30025MR1223222
- [6] H.S. Shapiro, The Schwarz function and its generalization to higher dimensions, Univ. of Arkansas Lecture Notes in Math. Sciences, vol. 9, John Wiley and Sons, New York, 1992. Zbl0784.30036MR1160990
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.