Fundamental tones and buckling loads of clamped plates

Mark S. Ashbaugh; Richard S. Laugesen

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 2, page 383-402
  • ISSN: 0391-173X

How to cite

top

Ashbaugh, Mark S., and Laugesen, Richard S.. "Fundamental tones and buckling loads of clamped plates." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.2 (1996): 383-402. <http://eudml.org/doc/84235>.

@article{Ashbaugh1996,
author = {Ashbaugh, Mark S., Laugesen, Richard S.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {lower bounds; critical buckling load; membrane},
language = {eng},
number = {2},
pages = {383-402},
publisher = {Scuola normale superiore},
title = {Fundamental tones and buckling loads of clamped plates},
url = {http://eudml.org/doc/84235},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Ashbaugh, Mark S.
AU - Laugesen, Richard S.
TI - Fundamental tones and buckling loads of clamped plates
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 2
SP - 383
EP - 402
LA - eng
KW - lower bounds; critical buckling load; membrane
UR - http://eudml.org/doc/84235
ER -

References

top
  1. [1] M. ABRAMOWITZ - I.A. STEGUN, Eds., Handbook of Mathematical Functions. National Bureau of Standards Applied Mathematics Series, Vol. 55. U.S. Government Printing Office, Washington, D.C., 1964 MR167642
  2. [2] M.S. Ashbaugh - R.D. Benguria, More bounds on eigenvalue ratios for Dirichlet Laplacians in N dimensions, SIAM J. Math. Anal., 24 (1993), 1622-1651. Zbl0809.35067MR1241161
  3. [3] M.S. Ashbaugh - R.D. Benguria, On Rayleigh's conjecture for the clamped plate and its generalization to three dimensions, Duke Math. J., 78 (1995), 1-17. Zbl0833.35035MR1328749
  4. [4] N.W. Bazley - D.W. Fox - J.T. Stadter, Upper and lower bounds for the frequencies of rectangular clamped plates, Z. Angew. Math. Mech., 47 (1967), 191-198. Zbl0161.44204
  5. [5] J.H. Bramble - L.E. Payne, Pointwise bounds in the first biharmonic boundary value problem, J. Math. & Phys., 42 (1963), 278-286. Zbl0168.37003MR159135
  6. [6] C.V. Coffman, On the structure of solutions to ΔΔu = λu which satisfy the clamped plate conditions on a right angle, SIAM J. Math. Anal., 13 (1982), 746-757. Zbl0498.73010
  7. [7] C.V. Coffman - R.J. Duffin, On the fundamental eigenfunctions of a clamped punctured disk, Adv. in Appl. Math., 13 (1992), 142-151. Zbl0762.35073MR1162137
  8. [8] S.J. Cox - M. Ross, Extremal eigenvalue problems for starlike planar domains, J. Differential Equations., 120 (1995), 174-197. Zbl0837.35101MR1339673
  9. [9] P.L. Duren - D. Khavinson - H.S. Shapiro - C. Sundberg, Contractive zero-divisors in Bergman spaces, Pacific J. Math., 157 (1993), 37-56. Zbl0739.30029MR1197044
  10. [10] G. Fichera, Numerical and Quantitative Analysis, Trans. by S. Graffi. Pitman, London, 1978. Zbl0384.65043MR519677
  11. [11] D.W. Fox - W.C. Rheinboldt, Computational methods for determining lower bounds for eigenvalues of operators in Hilbert space, SIAM Rev., 8 (1996), 427-462. Zbl0161.35504MR215508
  12. [12] L. Fox - P. Henrici - C. Moler, Approximations and bounds for eigenvalues of elliptic operators, SIAM J. Numer. Anal., 4 (1967), 89-103. Zbl0148.39502MR215542
  13. [13] B. Kawohl, Rearrangements and Convexity of Level Sets in PDE. Springer-Verlag, Berlin, 1985. Zbl0593.35002MR810619
  14. [14] V.A. Kozlov - V.A. Kondrat'ev - V.G. Maz'ya, On sign variation and the absence of "strong " zeros of solutions of elliptic equations, Math. USSR-Izv., 34 (1990), 337-353. Zbl0701.35062MR998299
  15. [15] B. Knauer, Untere Schranken für die Eigenwerte selbstadjungierter positiv-definiter Operatoren, Numer. Math., 17 (1971), 166-171. Zbl0206.46004MR283978
  16. [16] E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Comm. Univ. Tartu(Dorpat), A9 (1926), 1-44. English translation in: Edgar Krahn 1894-1961 : A Centenary Volume. Ed: Ü. Lumiste and J. Peetre, pp.139-174. IOS Press, Amsterdam, 1994. Zbl52.0510.03JFM52.0510.03
  17. [17] J.R. Kuttler, Upper and lower bounds for eigenvalues by finite differences, Pacific J. Math., 35 (1970), 429-440. Zbl0204.12003MR277105
  18. [18] J.R. Kuttler - V.G. Sigillito, Upper and lower bounds for frequencies of clamped rhombical plates, J. Sound Vibration, 68 (1980), 597-607. Zbl0435.73064
  19. [19] J.R. Kuttler - V.G. Sigillito, Upper and lower bounds for frequencies of trapezoidal and triangular plates, J. Sound Vibration, 78 (1981), 585-590. 
  20. [20] A.W. Leissa, Vibration of Plates. NASA SP-160. Office of Technology Utilization, NASA, Washington, D.C., 1969. 
  21. [21] L. Lorch, Monotonicity of the zeros of a cross product of Bessel functions, Methods Applicat. Anal., 1 (1994), 75-80. Zbl0840.33002MR1260384
  22. [22] J. McLaurin, Bounding eigenvalues of clamped plates, Z. Angew. Math. Phys., 19 (1968), 676-681. Zbl0187.46502MR235715
  23. [23] J.W. McLaurin, Bounds for Vibration Frequencies and Buckling Loads of Clamped Plates. Dissertation No. 4415, ETH, Zürich. Juris-Druck Verlag, Zürich, 1969. 
  24. [24] E. Mohr, Über die Rayleighsche Vermutung: Unter allen Platten von gegebener Fläche und konstanter Dichte und Elastizität hat die kreisförmige den tiefsten Grundton, Ann. Mat. Pura Appl., 104 (1975), 85-122. Zbl0315.35036MR381462
  25. [25] N. Nadirashvili, Rayleigh's conjecture on the principal frequency of the clamped plate, Arch. Ration. Mech. Anal., 129 (1995), 1-10. See also New isoperimetric inequalities in mathematical physics. In: Partial Differential Equations of Elliptic Type. Ed: A. Alvino, E. Fabes and G. Talenti. Cambridge University Press, Cambridge, 1994. MR1328469
  26. [26] S. Osher, On Green's function for the biharmonic equation in a right-angle wedge, J. Math. Anal. Appl., 43 (1973), 705-716. Zbl0263.31005MR324209
  27. [27] L.E. Payne, Inequalities for eigenvalues of membranes and plates, J. Rat. Mech. Anal., 4 (1955), 517-529. Zbl0064.34802MR70834
  28. [28] G. Pólya, On the characteristicfrequencies of a symmetric membrane, Math. Z., 63 (1955), 331-337. Zbl0065.08703MR73047
  29. [29] G. Pólya - G. Szegö, Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, Princeton, N.J., 1951. Zbl0044.38301MR43486
  30. [30] Lord Rayleigh ( J.W. Strutt), The Theory of Sound, Vol. 1. Dover Publications, New York, 1945. Zbl0061.45904MR16009
  31. [31] Y. Shibaoka, On the buckling of an elliptic plate with clamped edge, II, J. Phys. Soc. Japan, 12 (1957), 529-532. See also On the buckling of an elliptic plate with clamped edge, I. J. Phys. Soc. Japan, 11 (1957), 1088-1091. MR85006
  32. [32] P.-Y. Shih - H.L. Schreyer, Lower bounds to fundamental frequencies and buckling loads of columns and plates, Internat. J. Solids and Structures, 14 (1978), 1013-1026. Zbl0388.73042MR513765
  33. [33] G. Szegö, On membranes and plates, Proc.' Nat. Acad. Sci. U.S.A., 36 (1950), 210-216. See also Note to my paper "On membranes and plates,"Proc. Nat. Acad. Sci. U.S.A., 44 (1958), 314-316. Zbl0088.17001MR35629
  34. [34] G. Talenti, On the first eigenvalue of the clamped plate, Ann. Mat. Pura Appl.,129 (1981), 265-280. Zbl0475.73050MR648335
  35. [35] G.I. Taylor, The buckling load for a rectangular plate with four clamped edges, Z. Angew. Math. Mech., 13 (1933), 147-152. Zbl59.0745.03JFM59.0745.03
  36. [36] S. Timoshenko - J.M. Gere, Theory of Elastic Stability. 2nd Ed. McGraw-Hill, New York, 1961. MR134026
  37. [37] B.A. Troesch, Elliptical membranes with smallest second eigenvalue, Math. Comp., 27 (1973), 767-772. Zbl0271.35018MR421277
  38. [38] W. Velte, Bounds for critical values and eigenfrequencies of mechanical systems, in: Proceedings of the German Italian Symposium "Applications of Mathematics in Technology", held in Rome, 1984, pp. 469-484. B.G. Teubner, Stuttgart, 1984. Zbl0547.70026MR788563
  39. [39] G.N. Watson, Theory of Bessel Functions, 2nd Ed. Cambridge University Press, Cambridge, 1944. Zbl0849.33001MR10746
  40. [40] H.F. Weinberger, Variational Methods for Eigenvalue Approximation. Regional conference series in applied mathematics, 15. SIAM, Philadelphia, 1974. Zbl0296.49033MR400004
  41. [41 ] A. Weinstein - W. Stenger, Methods of Intermediate Problems for Eigenvalues: Theory and Ramifications. Academic Press, New York, 1972. Zbl0291.49034MR477971
  42. [42] W.H. Wittrick, Symmetrical buckling of right-angled isosceles triangular plates, Aeronaut. Quart., 5 (1954), 131-143. MR63254

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.