Asymptotic stability for perturbed hamiltonian systems, II

Giovanni Leoni

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1996)

  • Volume: 23, Issue: 3, page 531-549
  • ISSN: 0391-173X

How to cite

top

Leoni, Giovanni. "Asymptotic stability for perturbed hamiltonian systems, II." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 23.3 (1996): 531-549. <http://eudml.org/doc/84239>.

@article{Leoni1996,
author = {Leoni, Giovanni},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {asymptotic stability; Lyapunov's function},
language = {eng},
number = {3},
pages = {531-549},
publisher = {Scuola normale superiore},
title = {Asymptotic stability for perturbed hamiltonian systems, II},
url = {http://eudml.org/doc/84239},
volume = {23},
year = {1996},
}

TY - JOUR
AU - Leoni, Giovanni
TI - Asymptotic stability for perturbed hamiltonian systems, II
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1996
PB - Scuola normale superiore
VL - 23
IS - 3
SP - 531
EP - 549
LA - eng
KW - asymptotic stability; Lyapunov's function
UR - http://eudml.org/doc/84239
ER -

References

top
  1. [1] A. Artestein - E.F. Infante, On the asymptotic stability of oscillators with unbounded damping, Quart. Appl. Math.34 (1976), 195-199. Zbl0336.34048MR466789
  2. [2] R.J. Ballieu - K. Peiffer, Attractivity of the origin for the equation x + f (t, x, x) |x|α + g(x) = 0, J. Math. Anal. Appl.65 (1978), 321-332. Zbl0387.34038
  3. [3] T.A. Burton, On the equation x'' + f(x)h(x')x'+ g(x) = e(t), Ann. Math. Pura Appl.85 (1970), 227-285. Zbl0194.40203MR262595
  4. [4] E.A. Coddington - N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. Zbl0064.33002MR69338
  5. [5] R.J. Duffin, Stability of systems with nonlinear damping, J. Math. Anal. Appl.23 (1968), 428-439. Zbl0167.37701MR227542
  6. [6] L. Hatvani, Nonlinear oscillation with large damping, Dynamical Systems and Applications1 (1992), 257-270. Zbl0763.34042MR1182648
  7. [7] V. Lakshmikantham - V.M. Matrosov - S. Sivasundaram, Vector Liapunov Functions and Stability Analysis of Nonlinear Systems, Kluwer Academic Pub., 1991. Zbl0721.34054MR1206904
  8. [8] G. Leoni, A note on a theorem of Pucci& Serrin, J. Differential Equations113 (1994), 535-542. Zbl0814.34034MR1297669
  9. [9] G. Leoni, Asymptotic stability for perturbed Hamiltonian systems, Arch. Rational Mech. Anal.128 (1994), 105-125. Zbl0853.58068MR1308849
  10. [10] G. Leoni, Existence and asymptotic stability for perturbed Lagrangian and Hamiltonian systems, (1995), Ph.D. thesis, University of Minesota. 
  11. [11] G. Leoni - M. Manfredini - P. Pucci, Stability properties for solutions of general Euler-Lagrange systems, Differential Integral Equations5 (1992), 537-552. Zbl0758.34036MR1157486
  12. [12] J.J. Levin - J.A. Nohel, Global asymptotic stability for nonlinear systems of differential equations and applications to reactor dynamics, Arch. Rational Mech. Anal.5 (1960), 194-211. Zbl0094.06402MR119524
  13. [13] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1992. Zbl0717.34001
  14. [14] P. Pucci - J. Serrin, A general variational identity, Indiana Univ. Math. J.35 (1986), 681-703. Zbl0625.35027MR855181
  15. [15] P. Pucci - J. Serrin, Asymptotic stability for non-autonomous damped wave systems, Comm. Pure Appl. Math. 49 (1996), 177-216. Zbl0865.35089MR1371927
  16. [16] P. Pucci - J. Serrin, Asymptotic stability for nonlinear parabolic systems, Proc. of Conference on "Energy Methods in Continuum Mechanics", Kluwer Pl., 1995. Zbl0874.35056MR1431518
  17. [17] P. Pucci - J. Serrin, On the derivation of Hamiltonian's equations, Arch. Rational Mech. Anal.125 (1994), 297-310. Zbl0809.70012MR1253166
  18. [18] P. Pucci - J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems, Acta Math.170 (1993), 275-307. Zbl0797.34059MR1226530
  19. [19] P. Pucci - J. Serrin, Precise damping conditions for global asymptotic stability for nonlinear second order systems, II, J. Differential Equations113 (1994), 505-534. Zbl0814.34033MR1297668
  20. [20] P. Pucci - J. Serrin, Remarks on Lyapunov stability, Differential Integral Equations8 (1995), 1265-1277. Zbl0844.34055MR1329840
  21. [21] L. Salvatori, Famiglie ad un parametro di funzioni di Liapunov nello studio della stabilità, Symposia Math. Pubbl. INDAM6 (1971), 309-330. Zbl0243.34099MR279396
  22. [22] R.A. Smith, Asymptotic stability of x'' + a(t)x' + x = 0, Quart. J. Math. Oxford12 (1961), 123-126. Zbl0103.05604MR124582
  23. [23] M. Takegaki - S. Arimoto, A new feedback method for dynamic control of manipulators, J. Dyn. Systems, Meas. Control103 (1981), 119-125. Zbl0473.93012
  24. [24] L.H. Thurston - J.W. Wong, On global asymptotic stability of certain second order differential equations with integrable forcing terms, SIAM J. Appl. Math.24 (1973), 50-61. Zbl0279.34041MR380021
  25. [25] A.J. Der Schaft, Stabilization of Hamiltonian systems, Nonlinear Anal.10 (1986), 1021-1035. Zbl0613.93049MR857737
  26. [26] T. Yoshizawa, Asymptotic behavior of solutions of a system of differential equations, Contributions to Differential Equations1 (1963), 371-387. Zbl0127.30802MR148991

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.