Homoclinic orbits for a class of infinite dimensional hamiltonian systems
Philippe Clément; Patricio Felmer; Enzo Mitidieri
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 24, Issue: 2, page 367-393
- ISSN: 0391-173X
Access Full Article
topHow to cite
topClément, Philippe, Felmer, Patricio, and Mitidieri, Enzo. "Homoclinic orbits for a class of infinite dimensional hamiltonian systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.2 (1997): 367-393. <http://eudml.org/doc/84263>.
@article{Clément1997,
author = {Clément, Philippe, Felmer, Patricio, Mitidieri, Enzo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {critical point; Palais-Smale condition},
language = {eng},
number = {2},
pages = {367-393},
publisher = {Scuola normale superiore},
title = {Homoclinic orbits for a class of infinite dimensional hamiltonian systems},
url = {http://eudml.org/doc/84263},
volume = {24},
year = {1997},
}
TY - JOUR
AU - Clément, Philippe
AU - Felmer, Patricio
AU - Mitidieri, Enzo
TI - Homoclinic orbits for a class of infinite dimensional hamiltonian systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 2
SP - 367
EP - 393
LA - eng
KW - critical point; Palais-Smale condition
UR - http://eudml.org/doc/84263
ER -
References
top- [1] V. Barbu, Periodic solutions to unbounded hamiltonian systems, Discrete and Continuous Dynamical Systems1 (1995), 277-283. Zbl0882.34065
- [2] PH. Clement, On (Lp - Lq) coerciveness for a class of integrodifferential equations on the line, Two lectures at the 23rd annual Voronezh Winter School of Mathematics (USSR), January 1990, Tech. Report 5-4-90, University of Voronezh.
- [3] PH. Clement - D. De Figueiredo - E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations17 (1992), 923-940. Zbl0818.35027
- [4] PH. Clément - P. Felmer - E. Mitidieri, Solutions homoclines d'un système hamiltonien non-borné et superquadratique, C. R. Acad. Sci. Paris Sén. I Math.320 (1995), 1481-1484. Zbl0836.35043
- [5] Ph. Clément - R.C.A.M. van der Vorst, On a semilinear elliptic system, Differential Integral Eqquations8 (1995), 1317-1329. Zbl0835.35041
- [6] G. Da Prato - P. Grisvard, Sommes d'operateurs linéaires et équations différentielles opérationnelles, J. Math. Pures App. 54 (1975), 305-387. Zbl0315.47009
- [7] G. Di Blasio, Linear Parabolic Evolution Equations in L P spaces, Ann. Mat. Pura Appl.138 (1984), 55-104. Zbl0568.35047
- [8] G. Dore - A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. Zbl0615.47002
- [9] D. De Figueiredo, The Ekeland Variational Principle with Applications and Detours, Springer Verlag, Berlin, 1989. Zbl0688.49011
- [10] D. De Figueiredo - P. Felmer, On Superquadratic elliptic systems, Trans. Amer. Math. Soc.343 (1994), 99-116. Zbl0799.35063
- [11] P. Felmer, Periodic solutions of "superquadratic " hamiltonian systems, J. Diffefential Equations102 (1993) 188-207. Zbl0781.34034
- [12] D. Gilbarg - N. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften 224, Springer-Verlag, Berlin, 1977. Zbl0361.35003
- [13] J. Hulshof - R.A.C.M. Van Der Vorst, Differential systems with strongly indefinite structure, J. Funct. Anal.114 (1993), 32-58. Zbl0793.35038
- [14] M.A. Krasnoselsky, Topological Methods in the theory of nonlinear integral equations, Mc Millan, New York, 1964.
- [15] O.A. Ladyzhenskaya - N.N. Ural'tseva, On Hölder continuity of solutions and their derivatives of linear and quasilinear elliptic and parabolic equations, Trudy Mat. Inst. Steklov. 73 (1964), 172-220 (Russian); English translation in Amer. Math. Soc. Transl. 61 (1967), 207-269. Zbl0179.15003
- [16] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Eqation18 (1993), 125-151. Zbl0816.35027
- [17] L.A. Peletier - R.A.C.M. van der Vorst, Existence and non existence of nonlinear elliptic systems and the bi-harmonic equation, Differential Integral Equations. 5 (1992), 747-767. Zbl0758.35029
- [18] S.I. Pohozaev, Eigenfunctions of the equation Δu + λf (u) = 0, Soviet Math. Dokl. 6 (1965), 1408-1411. Zbl0141.30202
- [19] M.H. Protter - H.F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, 1967. Zbl0153.13602
- [20] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993. Zbl0784.45006
- [21] J. Prüss And H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. Zbl0665.47015
- [22] P. Pucci - J. Serrin, A general variational identity, Indiana Univ. Math. J.35 (1986), 681-703. Zbl0625.35027
- [23] P. Rabinowitz, Minimax Methods in Critical Point Theory with applications to Differential Equations, CBMS Regional Conference Series in Math. 65, AMS, Providence RI, 1986. Zbl0609.58002
- [24] P. Rabinowitz, Homoclinic orbits for a class of hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A114 (1990), 33-38. Zbl0705.34054
- [25] P. Rabinowitz, A note on a semilinear elliptic equation in RN, in "Nonlinear Analysis, a tribute in honour of Giovanni Prodi" . Scuola Normale Superiore, Pisa, 1991. Zbl0836.35045
- [26] K. Tanaka, Homoclinic orbits in a first order superquadratic hamiltonian system: convergence of subharmonic orbits, J. Differentil Equation94 (1991) 315-339. Zbl0787.34041
- [27] R.A.C.M. van der Vorst, Variational identities and applications to differential systems, Arch. Rat. Mech. Anal.116 (1991), 375-398. Zbl0796.35059
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.