Homoclinic orbits for a class of infinite dimensional hamiltonian systems

Philippe Clément; Patricio Felmer; Enzo Mitidieri

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 2, page 367-393
  • ISSN: 0391-173X

How to cite

top

Clément, Philippe, Felmer, Patricio, and Mitidieri, Enzo. "Homoclinic orbits for a class of infinite dimensional hamiltonian systems." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.2 (1997): 367-393. <http://eudml.org/doc/84263>.

@article{Clément1997,
author = {Clément, Philippe, Felmer, Patricio, Mitidieri, Enzo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {critical point; Palais-Smale condition},
language = {eng},
number = {2},
pages = {367-393},
publisher = {Scuola normale superiore},
title = {Homoclinic orbits for a class of infinite dimensional hamiltonian systems},
url = {http://eudml.org/doc/84263},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Clément, Philippe
AU - Felmer, Patricio
AU - Mitidieri, Enzo
TI - Homoclinic orbits for a class of infinite dimensional hamiltonian systems
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 2
SP - 367
EP - 393
LA - eng
KW - critical point; Palais-Smale condition
UR - http://eudml.org/doc/84263
ER -

References

top
  1. [1] V. Barbu, Periodic solutions to unbounded hamiltonian systems, Discrete and Continuous Dynamical Systems1 (1995), 277-283. Zbl0882.34065
  2. [2] PH. Clement, On (Lp - Lq) coerciveness for a class of integrodifferential equations on the line, Two lectures at the 23rd annual Voronezh Winter School of Mathematics (USSR), January 1990, Tech. Report 5-4-90, University of Voronezh. 
  3. [3] PH. Clement - D. De Figueiredo - E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations17 (1992), 923-940. Zbl0818.35027
  4. [4] PH. Clément - P. Felmer - E. Mitidieri, Solutions homoclines d'un système hamiltonien non-borné et superquadratique, C. R. Acad. Sci. Paris Sén. I Math.320 (1995), 1481-1484. Zbl0836.35043
  5. [5] Ph. Clément - R.C.A.M. van der Vorst, On a semilinear elliptic system, Differential Integral Eqquations8 (1995), 1317-1329. Zbl0835.35041
  6. [6] G. Da Prato - P. Grisvard, Sommes d'operateurs linéaires et équations différentielles opérationnelles, J. Math. Pures App. 54 (1975), 305-387. Zbl0315.47009
  7. [7] G. Di Blasio, Linear Parabolic Evolution Equations in L P spaces, Ann. Mat. Pura Appl.138 (1984), 55-104. Zbl0568.35047
  8. [8] G. Dore - A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201. Zbl0615.47002
  9. [9] D. De Figueiredo, The Ekeland Variational Principle with Applications and Detours, Springer Verlag, Berlin, 1989. Zbl0688.49011
  10. [10] D. De Figueiredo - P. Felmer, On Superquadratic elliptic systems, Trans. Amer. Math. Soc.343 (1994), 99-116. Zbl0799.35063
  11. [11] P. Felmer, Periodic solutions of "superquadratic " hamiltonian systems, J. Diffefential Equations102 (1993) 188-207. Zbl0781.34034
  12. [12] D. Gilbarg - N. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften 224, Springer-Verlag, Berlin, 1977. Zbl0361.35003
  13. [13] J. Hulshof - R.A.C.M. Van Der Vorst, Differential systems with strongly indefinite structure, J. Funct. Anal.114 (1993), 32-58. Zbl0793.35038
  14. [14] M.A. Krasnoselsky, Topological Methods in the theory of nonlinear integral equations, Mc Millan, New York, 1964. 
  15. [15] O.A. Ladyzhenskaya - N.N. Ural'tseva, On Hölder continuity of solutions and their derivatives of linear and quasilinear elliptic and parabolic equations, Trudy Mat. Inst. Steklov. 73 (1964), 172-220 (Russian); English translation in Amer. Math. Soc. Transl. 61 (1967), 207-269. Zbl0179.15003
  16. [16] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Eqation18 (1993), 125-151. Zbl0816.35027
  17. [17] L.A. Peletier - R.A.C.M. van der Vorst, Existence and non existence of nonlinear elliptic systems and the bi-harmonic equation, Differential Integral Equations. 5 (1992), 747-767. Zbl0758.35029
  18. [18] S.I. Pohozaev, Eigenfunctions of the equation Δu + λf (u) = 0, Soviet Math. Dokl. 6 (1965), 1408-1411. Zbl0141.30202
  19. [19] M.H. Protter - H.F. Weinberger, Maximum Principles in Differential Equations, Prentice Hall, 1967. Zbl0153.13602
  20. [20] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993. Zbl0784.45006
  21. [21] J. Prüss And H. Sohr, On operators with bounded imaginary powers in Banach spaces, Math. Z. 203 (1990), 429-452. Zbl0665.47015
  22. [22] P. Pucci - J. Serrin, A general variational identity, Indiana Univ. Math. J.35 (1986), 681-703. Zbl0625.35027
  23. [23] P. Rabinowitz, Minimax Methods in Critical Point Theory with applications to Differential Equations, CBMS Regional Conference Series in Math. 65, AMS, Providence RI, 1986. Zbl0609.58002
  24. [24] P. Rabinowitz, Homoclinic orbits for a class of hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A114 (1990), 33-38. Zbl0705.34054
  25. [25] P. Rabinowitz, A note on a semilinear elliptic equation in RN, in "Nonlinear Analysis, a tribute in honour of Giovanni Prodi" . Scuola Normale Superiore, Pisa, 1991. Zbl0836.35045
  26. [26] K. Tanaka, Homoclinic orbits in a first order superquadratic hamiltonian system: convergence of subharmonic orbits, J. Differentil Equation94 (1991) 315-339. Zbl0787.34041
  27. [27] R.A.C.M. van der Vorst, Variational identities and applications to differential systems, Arch. Rat. Mech. Anal.116 (1991), 375-398. Zbl0796.35059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.