Rational points of a curve which has a nontrivial automorphism
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 24, Issue: 3, page 551-569
- ISSN: 0391-173X
Access Full Article
topHow to cite
topFujimori, Masami. "Rational points of a curve which has a nontrivial automorphism." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 551-569. <http://eudml.org/doc/84270>.
@article{Fujimori1997,
author = {Fujimori, Masami},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {rational points; Jacobian variety; Neron-Tate height function; fixed points of a nontrivial automorphism; curves of genus },
language = {eng},
number = {3},
pages = {551-569},
publisher = {Scuola normale superiore},
title = {Rational points of a curve which has a nontrivial automorphism},
url = {http://eudml.org/doc/84270},
volume = {24},
year = {1997},
}
TY - JOUR
AU - Fujimori, Masami
TI - Rational points of a curve which has a nontrivial automorphism
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 551
EP - 569
LA - eng
KW - rational points; Jacobian variety; Neron-Tate height function; fixed points of a nontrivial automorphism; curves of genus
UR - http://eudml.org/doc/84270
ER -
References
top- [1] V.A. Dem'yanenko, Rational points of a class of algebraic curves, Amer. Math. Soc. Transl. Series 2, 66 (1968), 246-272. Zbl0181.24001
- [2] M. Fujimori, On the solutions of Thue equations, Tôhoku Math. J. 46 (1994), 523-539. Correction and supplement, 2 pages, 1996. Zbl0828.11015MR1301287
- [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
- [4] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983. Zbl0528.14013MR715605
- [5] Yu. I. Manin, The Tate height ofpoints on an abelian variety. Its variants and applications, Amer. Math. Soc. Trans1. Series 2, 59 (1966), 82-110. Zbl0192.26801
- [6] Yu.I. Manin, The refined structure of the Neron-Tate height, Math. USSR-Sb. 12 (1970), 325-342. Zbl0252.14007
- [7] J.S. Milne, Abelian varieties, In G. Cornell and J.H. Silverman, editors, "Arithmetic Geometry", pages 103-150, Storrs Conn. 1984, 1986. Springer-Verlag, New York. Zbl0604.14028MR861974
- [8] J.S. Milne, Jacobian varieties, In G. Cornell and J. H. Silverman, editors, " Arithmetic Geometry", pages 167-212, Storrs Conn. 1984, 1986. Springer-Verlag, New York. Zbl0604.14018MR861976
- [9] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects of Mathematics. E15 Friedr. Vieweg & Sohn, Braunschweig, 2nd edition, 1990. Zbl0676.14005MR1757192
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.