Rational points of a curve which has a nontrivial automorphism

Masami Fujimori

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 3, page 551-569
  • ISSN: 0391-173X

How to cite

top

Fujimori, Masami. "Rational points of a curve which has a nontrivial automorphism." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.3 (1997): 551-569. <http://eudml.org/doc/84270>.

@article{Fujimori1997,
author = {Fujimori, Masami},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {rational points; Jacobian variety; Neron-Tate height function; fixed points of a nontrivial automorphism; curves of genus },
language = {eng},
number = {3},
pages = {551-569},
publisher = {Scuola normale superiore},
title = {Rational points of a curve which has a nontrivial automorphism},
url = {http://eudml.org/doc/84270},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Fujimori, Masami
TI - Rational points of a curve which has a nontrivial automorphism
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 3
SP - 551
EP - 569
LA - eng
KW - rational points; Jacobian variety; Neron-Tate height function; fixed points of a nontrivial automorphism; curves of genus
UR - http://eudml.org/doc/84270
ER -

References

top
  1. [1] V.A. Dem'yanenko, Rational points of a class of algebraic curves, Amer. Math. Soc. Transl. Series 2, 66 (1968), 246-272. Zbl0181.24001
  2. [2] M. Fujimori, On the solutions of Thue equations, Tôhoku Math. J. 46 (1994), 523-539. Correction and supplement, 2 pages, 1996. Zbl0828.11015MR1301287
  3. [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math. 52Springer-Verlag, New York, 1977. Zbl0367.14001MR463157
  4. [4] S. Lang, Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983. Zbl0528.14013MR715605
  5. [5] Yu. I. Manin, The Tate height ofpoints on an abelian variety. Its variants and applications, Amer. Math. Soc. Trans1. Series 2, 59 (1966), 82-110. Zbl0192.26801
  6. [6] Yu.I. Manin, The refined structure of the Neron-Tate height, Math. USSR-Sb. 12 (1970), 325-342. Zbl0252.14007
  7. [7] J.S. Milne, Abelian varieties, In G. Cornell and J.H. Silverman, editors, "Arithmetic Geometry", pages 103-150, Storrs Conn. 1984, 1986. Springer-Verlag, New York. Zbl0604.14028MR861974
  8. [8] J.S. Milne, Jacobian varieties, In G. Cornell and J. H. Silverman, editors, " Arithmetic Geometry", pages 167-212, Storrs Conn. 1984, 1986. Springer-Verlag, New York. Zbl0604.14018MR861976
  9. [9] J.-P. Serre, Lectures on the Mordell-Weil Theorem, Aspects of Mathematics. E15 Friedr. Vieweg & Sohn, Braunschweig, 2nd edition, 1990. Zbl0676.14005MR1757192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.