A general-weighted Sturm-Liouville problem

Adrian Constantin

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 24, Issue: 4, page 767-782
  • ISSN: 0391-173X

How to cite

top

Constantin, Adrian. "A general-weighted Sturm-Liouville problem." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 24.4 (1997): 767-782. <http://eudml.org/doc/84278>.

@article{Constantin1997,
author = {Constantin, Adrian},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {spectrum; Sturm-Liouville problem; ordinary differential equation},
language = {eng},
number = {4},
pages = {767-782},
publisher = {Scuola normale superiore},
title = {A general-weighted Sturm-Liouville problem},
url = {http://eudml.org/doc/84278},
volume = {24},
year = {1997},
}

TY - JOUR
AU - Constantin, Adrian
TI - A general-weighted Sturm-Liouville problem
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 24
IS - 4
SP - 767
EP - 782
LA - eng
KW - spectrum; Sturm-Liouville problem; ordinary differential equation
UR - http://eudml.org/doc/84278
ER -

References

top
  1. [1] M.S. Alber - R. Camassa - D. Holm - J.E. Marsden, The geometry of peaked solutions of a class of integrable PDE's, Lett. Math. Phys. 32 (1994), 37-151. Zbl0808.35124MR1296383
  2. [2] F.V. Atkinson - A.B. Mingarelli, Asymptotics of the number of zeros and of the eigenvalues of general-weighted Sturm-Liouville problems, J. Reine Angew. Math. 375/376 (1987), 380-393. Zbl0599.34026MR882305
  3. [3] G. Birkhoff - G.C. Rota, Ordinary Differential Equations, J. Wiley & Sons, New York, 1989. Zbl0183.35601MR972977
  4. [4] R. Camassa - D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett.71 (1993), 1661-1664. Zbl0972.35521MR1234453
  5. [5] R. Camassa - D. Holm - J. Hyman, A new integrable shallow water equation, Adv. Appl. Mech.31 (1994), 1-33. Zbl0808.76011
  6. [6] E.A. Coddington - N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. Zbl0064.33002MR69338
  7. [7] P. Hartman, Ordinary Differential Equations, Birkhäuser Verlag, Basel, 1982. Zbl0476.34002MR658490
  8. [8] W. Magnus - S. Winkler, Hill's Equation, Interscience Publ., New York, 1966. Zbl0158.09604MR197830
  9. [9] M. Reed - B. Simon, Methods of Modem Mathematical Physics, Vol. I, Academic Press, New York, 1972. Zbl0242.46001MR493419
  10. [10] J.R. Retherford, Hilbert Space: Compact Operators and the Trace Theorem, London Math. Soc. Monographs, Cambridge University PressCambridge, 1993. Zbl0783.47031MR1237405
  11. [11] R. Richardson, Contributions to the study of oscillation properties of the solutions of linear differential equations of the second order, Amer. J. Math.60 (1918), 283-316. MR1506360JFM46.0698.03
  12. [12] F. Riesz - B. Sz Nagy, Functional Analysis, Ungar, New York, 1955. MR71727

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.