Non semicontinuous quadratic integral functionals with continuous coefficients
Fausto Acanfora; Stefano Mortola
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 1-2, page 1-9
- ISSN: 0391-173X
Access Full Article
topHow to cite
topAcanfora, Fausto, and Mortola, Stefano. "Non semicontinuous quadratic integral functionals with continuous coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 1-9. <http://eudml.org/doc/84285>.
@article{Acanfora1997,
author = {Acanfora, Fausto, Mortola, Stefano},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {lower-semicontinuity; integral functionals; quadratic functional; positive definiteness},
language = {eng},
number = {1-2},
pages = {1-9},
publisher = {Scuola normale superiore},
title = {Non semicontinuous quadratic integral functionals with continuous coefficients},
url = {http://eudml.org/doc/84285},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Acanfora, Fausto
AU - Mortola, Stefano
TI - Non semicontinuous quadratic integral functionals with continuous coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 1
EP - 9
LA - eng
KW - lower-semicontinuity; integral functionals; quadratic functional; positive definiteness
UR - http://eudml.org/doc/84285
ER -
References
top- [1] G. Buttazzo, "Semicontinuity, relaxation and integral representation in the calculus of variations", Longman Scientific & Technical, 1989. Zbl0669.49005MR1020296
- [2] L. Carbone - C. Sbordone, Some properties of Γ-limits of integrals functionals, Ann. Mat. Pura Appl.122 (1979), 1-60. Zbl0474.49016
- [3] G. Dal Maso, "An Introduction to Γ-convergence", Birkhäuser, 1993. Zbl0816.49001
- [4] G. Dal Maso, Integral representation on BV(Q) of r-limits of variational integrals, Manuscripta Math.30 (1980), 387-413. Zbl0435.49016MR567216
- [5] N. Fusco - G. Moscariello, L2-lower semicontinuity of functionals of quadratic type, Ann. Mat. Pura Appl.129 (1981), 305-326. Zbl0483.49008MR648337
- [6] C.Y. Pauc, "La Méthode Métrique en Calcul des Variations", Hermann, Paris, 1941. Zbl0027.10502
- [7] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc.101 (1961), 139-167. Zbl0102.04601MR138018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.