Non semicontinuous quadratic integral functionals with continuous coefficients

Fausto Acanfora; Stefano Mortola

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 1-2, page 1-9
  • ISSN: 0391-173X

How to cite

top

Acanfora, Fausto, and Mortola, Stefano. "Non semicontinuous quadratic integral functionals with continuous coefficients." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 1-9. <http://eudml.org/doc/84285>.

@article{Acanfora1997,
author = {Acanfora, Fausto, Mortola, Stefano},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {lower-semicontinuity; integral functionals; quadratic functional; positive definiteness},
language = {eng},
number = {1-2},
pages = {1-9},
publisher = {Scuola normale superiore},
title = {Non semicontinuous quadratic integral functionals with continuous coefficients},
url = {http://eudml.org/doc/84285},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Acanfora, Fausto
AU - Mortola, Stefano
TI - Non semicontinuous quadratic integral functionals with continuous coefficients
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 1
EP - 9
LA - eng
KW - lower-semicontinuity; integral functionals; quadratic functional; positive definiteness
UR - http://eudml.org/doc/84285
ER -

References

top
  1. [1] G. Buttazzo, "Semicontinuity, relaxation and integral representation in the calculus of variations", Longman Scientific & Technical, 1989. Zbl0669.49005MR1020296
  2. [2] L. Carbone - C. Sbordone, Some properties of Γ-limits of integrals functionals, Ann. Mat. Pura Appl.122 (1979), 1-60. Zbl0474.49016
  3. [3] G. Dal Maso, "An Introduction to Γ-convergence", Birkhäuser, 1993. Zbl0816.49001
  4. [4] G. Dal Maso, Integral representation on BV(Q) of r-limits of variational integrals, Manuscripta Math.30 (1980), 387-413. Zbl0435.49016MR567216
  5. [5] N. Fusco - G. Moscariello, L2-lower semicontinuity of functionals of quadratic type, Ann. Mat. Pura Appl.129 (1981), 305-326. Zbl0483.49008MR648337
  6. [6] C.Y. Pauc, "La Méthode Métrique en Calcul des Variations", Hermann, Paris, 1941. Zbl0027.10502
  7. [7] J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc.101 (1961), 139-167. Zbl0102.04601MR138018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.