Harmonic maps on planar lattices

Stefan Müller; Michael Struwe; Vladimir Šverák

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 3-4, page 713-730
  • ISSN: 0391-173X

How to cite

top

Müller, Stefan, Struwe, Michael, and Šverák, Vladimir. "Harmonic maps on planar lattices." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 713-730. <http://eudml.org/doc/84311>.

@article{Müller1997,
author = {Müller, Stefan, Struwe, Michael, Šverák, Vladimir},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {planar lattices; harmonic maps},
language = {eng},
number = {3-4},
pages = {713-730},
publisher = {Scuola normale superiore},
title = {Harmonic maps on planar lattices},
url = {http://eudml.org/doc/84311},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Müller, Stefan
AU - Struwe, Michael
AU - Šverák, Vladimir
TI - Harmonic maps on planar lattices
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 713
EP - 730
LA - eng
KW - planar lattices; harmonic maps
UR - http://eudml.org/doc/84311
ER -

References

top
  1. [1] F. Bethuel, Weak convergence of Palais-Smale sequences for some critical functionals, Calc. Var.1 (1993), 267-310. Zbl0812.58018MR1261547
  2. [2] F. Bethuel, On the singular set of stationary harmonic maps, Manusc. Math.78 (1993), 417-443. Zbl0792.53039MR1208652
  3. [3] R.R. Coifman - P.-L. Lions - Y. Meyer - S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993), 247-286. Zbl0864.42009MR1225511
  4. [4] D. Christodoulou - S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math.46 (1993), 1041-1091. Zbl0744.58071MR1223662
  5. [5] L.C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal.116 (1991), 101-113. Zbl0754.58007MR1143435
  6. [6] C. Fefferman - E.M. Stein, Hp spaces of several variables, Acta Math.129 (1972), 137-193. Zbl0257.46078MR447953
  7. [7] A. Freire - S. Müller - M. Struwe, Weak Convergence of Wave Maps from (1 +2)-Dimensional Minkowski Space to Riemannian Manifolds, Invent. Math. (to appear). Zbl0906.35061MR1483995
  8. [8] A. Freire - S. Müller - M. Struwe, Weak Compactness of Wave Maps and Harmonic Maps, preprint (1996). 
  9. [9] F. Hélein, Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C. R. Acad. Sci. Paris Ser. I Math.312 (1991), 591-596. Zbl0728.35015MR1101039
  10. [10] P.L. Lions, The concentration compactness principle in the calculus of variations, the limit case, part II, Rev. Mat. Iberoam.12 (1985), 45-121. Zbl0704.49006MR850686
  11. [11] S. Müller - M. Struwe, Global Existence of Wave Maps in 1 + 2 Dimensions for Finite Energy Data, Top. Methods Nonlinear Analysis, 7 (1996), 245-259. Zbl0896.35086MR1481698
  12. [12] S. Müller - M. Struwe, Spatially Discrete Wave Maps in 1+2 Dimensions, in preparation. Zbl0933.58020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.