Harmonic maps on planar lattices
Stefan Müller; Michael Struwe; Vladimir Šverák
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 713-730
- ISSN: 0391-173X
Access Full Article
topHow to cite
topMüller, Stefan, Struwe, Michael, and Šverák, Vladimir. "Harmonic maps on planar lattices." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 713-730. <http://eudml.org/doc/84311>.
@article{Müller1997,
author = {Müller, Stefan, Struwe, Michael, Šverák, Vladimir},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {planar lattices; harmonic maps},
language = {eng},
number = {3-4},
pages = {713-730},
publisher = {Scuola normale superiore},
title = {Harmonic maps on planar lattices},
url = {http://eudml.org/doc/84311},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Müller, Stefan
AU - Struwe, Michael
AU - Šverák, Vladimir
TI - Harmonic maps on planar lattices
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 713
EP - 730
LA - eng
KW - planar lattices; harmonic maps
UR - http://eudml.org/doc/84311
ER -
References
top- [1] F. Bethuel, Weak convergence of Palais-Smale sequences for some critical functionals, Calc. Var.1 (1993), 267-310. Zbl0812.58018MR1261547
- [2] F. Bethuel, On the singular set of stationary harmonic maps, Manusc. Math.78 (1993), 417-443. Zbl0792.53039MR1208652
- [3] R.R. Coifman - P.-L. Lions - Y. Meyer - S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl.72 (1993), 247-286. Zbl0864.42009MR1225511
- [4] D. Christodoulou - S. Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math.46 (1993), 1041-1091. Zbl0744.58071MR1223662
- [5] L.C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rat. Mech. Anal.116 (1991), 101-113. Zbl0754.58007MR1143435
- [6] C. Fefferman - E.M. Stein, Hp spaces of several variables, Acta Math.129 (1972), 137-193. Zbl0257.46078MR447953
- [7] A. Freire - S. Müller - M. Struwe, Weak Convergence of Wave Maps from (1 +2)-Dimensional Minkowski Space to Riemannian Manifolds, Invent. Math. (to appear). Zbl0906.35061MR1483995
- [8] A. Freire - S. Müller - M. Struwe, Weak Compactness of Wave Maps and Harmonic Maps, preprint (1996).
- [9] F. Hélein, Regularité des applications faiblement harmoniques entre une surface et une variteé Riemannienne, C. R. Acad. Sci. Paris Ser. I Math.312 (1991), 591-596. Zbl0728.35015MR1101039
- [10] P.L. Lions, The concentration compactness principle in the calculus of variations, the limit case, part II, Rev. Mat. Iberoam.12 (1985), 45-121. Zbl0704.49006MR850686
- [11] S. Müller - M. Struwe, Global Existence of Wave Maps in 1 + 2 Dimensions for Finite Energy Data, Top. Methods Nonlinear Analysis, 7 (1996), 245-259. Zbl0896.35086MR1481698
- [12] S. Müller - M. Struwe, Spatially Discrete Wave Maps in 1+2 Dimensions, in preparation. Zbl0933.58020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.