Evolution of subsets of and parabolic problem for the Levi equation
Zbigniew Slodkowski; Giuseppe Tomassini
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 3-4, page 757-784
- ISSN: 0391-173X
Access Full Article
topHow to cite
topSlodkowski, Zbigniew, and Tomassini, Giuseppe. "Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 757-784. <http://eudml.org/doc/84314>.
@article{Slodkowski1997,
author = {Slodkowski, Zbigniew, Tomassini, Giuseppe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {evolution by Levi curvature; evolution by mean curvature},
language = {eng},
number = {3-4},
pages = {757-784},
publisher = {Scuola normale superiore},
title = {Evolution of subsets of $\mathbb \{C\}^2$ and parabolic problem for the Levi equation},
url = {http://eudml.org/doc/84314},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Slodkowski, Zbigniew
AU - Tomassini, Giuseppe
TI - Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 757
EP - 784
LA - eng
KW - evolution by Levi curvature; evolution by mean curvature
UR - http://eudml.org/doc/84314
ER -
References
top- [AS] L. Ambrosio - H.M. Soner, Level set approach to mean curvature flow in any codimension, J. Diff. Geom.43 (1996), 693-737. Zbl0868.35046MR1412682
- [B] K.A. Brakke, The motion of a surface by its mean curvature, Princeton Univ. Press, Princeton, NJ, 1978. Zbl0386.53047MR485012
- [D] J.P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Zeit.204 (1990), 283-295. Zbl0682.32017MR1055992
- [ES] L.C. Evans - J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geometry33, n. 4 (1991), 635-681. Zbl0726.53029MR1100206
- [GS] R. Gay - A. Sebbar, Division et extension dans l'algèbre A∞(Ω) d'un ouvert pseudoconvexe à bord lisse de Cn, Math. Z.189 (1985), 421-447. Zbl0547.32009
- [H] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom.20 (1984), 237-266. Zbl0556.53001MR772132
- [LSU] O.A. Ladyzhenskaja - V.A. Solonnikov - N.N. Ural'tseva, Linear and quasilinear equations ofparabolic type, Amer. Math. Soc., Providence, RI, 1968.
- [S] N. Sibony, Some aspects of weakly pseudoconvex domains, "Several Complex Variables and Complex Geometry", Proc. of Symposia on Pure Math., 52, part I, 199-231. Zbl0747.32006MR1128526
- [Si] Y.T. Siu, Every Stein subvariety has a Stein neighbourhood, Inv. Math.38 (1977) 89-100. Zbl0343.32014
- [S1] Z. Slodkowski, Pseudoconvex classes of functions. II. Affine pseudoconvex classes on RN, Pac. J. Math.141 (1990), 125-163. Zbl0693.31007MR1028268
- [ST1] Z. Slodkowski - G. Tomassini, Geometric properties of solutions of the Levi curvature equation in C2, J. Funct. Anal.138 (1996), 188-212. Zbl0874.47023MR1391635
- [ST2] Z. Slodkowski - G. Tomassini, Levi equation and evolution of subsets of C2, Rend. Mat. Acc. Lincei s. 9, 7 (1996), 235-239. Zbl0888.32007MR1454417
- [W] J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech.18 (1968), 143-148. Zbl0159.16002MR227465
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.