Evolution of subsets of 2 and parabolic problem for the Levi equation

Zbigniew Slodkowski; Giuseppe Tomassini

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 3-4, page 757-784
  • ISSN: 0391-173X

How to cite

top

Slodkowski, Zbigniew, and Tomassini, Giuseppe. "Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 757-784. <http://eudml.org/doc/84314>.

@article{Slodkowski1997,
author = {Slodkowski, Zbigniew, Tomassini, Giuseppe},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {evolution by Levi curvature; evolution by mean curvature},
language = {eng},
number = {3-4},
pages = {757-784},
publisher = {Scuola normale superiore},
title = {Evolution of subsets of $\mathbb \{C\}^2$ and parabolic problem for the Levi equation},
url = {http://eudml.org/doc/84314},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Slodkowski, Zbigniew
AU - Tomassini, Giuseppe
TI - Evolution of subsets of $\mathbb {C}^2$ and parabolic problem for the Levi equation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 757
EP - 784
LA - eng
KW - evolution by Levi curvature; evolution by mean curvature
UR - http://eudml.org/doc/84314
ER -

References

top
  1. [AS] L. Ambrosio - H.M. Soner, Level set approach to mean curvature flow in any codimension, J. Diff. Geom.43 (1996), 693-737. Zbl0868.35046MR1412682
  2. [B] K.A. Brakke, The motion of a surface by its mean curvature, Princeton Univ. Press, Princeton, NJ, 1978. Zbl0386.53047MR485012
  3. [D] J.P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Zeit.204 (1990), 283-295. Zbl0682.32017MR1055992
  4. [ES] L.C. Evans - J. Spruck, Motion of level sets by mean curvature. I, J. Differential Geometry33, n. 4 (1991), 635-681. Zbl0726.53029MR1100206
  5. [GS] R. Gay - A. Sebbar, Division et extension dans l'algèbre A∞(Ω) d'un ouvert pseudoconvexe à bord lisse de Cn, Math. Z.189 (1985), 421-447. Zbl0547.32009
  6. [H] G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Diff. Geom.20 (1984), 237-266. Zbl0556.53001MR772132
  7. [LSU] O.A. Ladyzhenskaja - V.A. Solonnikov - N.N. Ural'tseva, Linear and quasilinear equations ofparabolic type, Amer. Math. Soc., Providence, RI, 1968. 
  8. [S] N. Sibony, Some aspects of weakly pseudoconvex domains, "Several Complex Variables and Complex Geometry", Proc. of Symposia on Pure Math., 52, part I, 199-231. Zbl0747.32006MR1128526
  9. [Si] Y.T. Siu, Every Stein subvariety has a Stein neighbourhood, Inv. Math.38 (1977) 89-100. Zbl0343.32014
  10. [S1] Z. Slodkowski, Pseudoconvex classes of functions. II. Affine pseudoconvex classes on RN, Pac. J. Math.141 (1990), 125-163. Zbl0693.31007MR1028268
  11. [ST1] Z. Slodkowski - G. Tomassini, Geometric properties of solutions of the Levi curvature equation in C2, J. Funct. Anal.138 (1996), 188-212. Zbl0874.47023MR1391635
  12. [ST2] Z. Slodkowski - G. Tomassini, Levi equation and evolution of subsets of C2, Rend. Mat. Acc. Lincei s. 9, 7 (1996), 235-239. Zbl0888.32007MR1454417
  13. [W] J.B. Walsh, Continuity of envelopes of plurisubharmonic functions, J. Math. Mech.18 (1968), 143-148. Zbl0159.16002MR227465

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.