On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity

Roger Temam[1]; Xiaoming Wang

  • [1] The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, USA.

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)

  • Volume: 25, Issue: 3-4, page 807-828
  • ISSN: 0391-173X

How to cite

top

Temam, Roger, and Wang, Xiaoming. "On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.3-4 (1997): 807-828. <http://eudml.org/doc/84316>.

@article{Temam1997,
affiliation = {The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN, USA.},
author = {Temam, Roger, Wang, Xiaoming},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {convergence; Navier-Stokes equations; Euler equations; channel; bounded domain},
language = {eng},
number = {3-4},
pages = {807-828},
publisher = {Scuola normale superiore},
title = {On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity},
url = {http://eudml.org/doc/84316},
volume = {25},
year = {1997},
}

TY - JOUR
AU - Temam, Roger
AU - Wang, Xiaoming
TI - On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 3-4
SP - 807
EP - 828
LA - eng
KW - convergence; Navier-Stokes equations; Euler equations; channel; bounded domain
UR - http://eudml.org/doc/84316
ER -

References

top
  1. [Al] S.N. Alekseenko, Existence and asymptotic representation of weak solutions to the flowing problem under the condition of regular slippage on solid walls, Siberian Math. J.35 (1994), 209-229. Zbl0856.35099MR1288259
  2. [As] K. Asano, Zero-Viscosity Limit of the Incompressible Navier-Stokes Equations 1, 2, Preprint, University of Kyoto, 1997. 
  3. [BP] R. Balian - J.L. Peube, "Fluid Dynamics", Cours de l'Ecole d'Ete de Physique Théorique, Les HouchesGordon and Breach Science Publishers, New-York, 1977. Zbl0348.00025MR495783
  4. [BC1] G.I. Barenblatt - A.J. Chorin, Small viscosity asymptotics for the inertial range of local structure and for the wall region of wall-bounded turbulent shear flow, Proc. Natl. Acad. Sci., Applied Mathematics93 (1996). Zbl0856.76026
  5. [BC2] G.I. Barenblatt - A.J. Chorin, Scaling laws and zero viscosity limits for wall-bounded shear flows and for local structure in developed turbulence. Preprint, Center for Pure and Applied Mathematics, University of California at Berkeley, n° PAM-678, 1996. MR1492690
  6. [Ba] G.K. Batchelor, "An Introduction to Fluid Dynamics", Cambridge University Press, Cambridge, 1967. Zbl0152.44402MR1744638
  7. [BKM] J.T. Beale - T. Kato - A. Majda, Remarks on the breakdown of smooth solutions for the 3D Euler equations, Comm. Math. Phys.94 (1984), 61-66. Zbl0573.76029MR763762
  8. [Ch] A.J. Chorin, Turbulence as a near-equilibrium process, in Lecture in Applied Mathematics31 (1996), 235-249, AMS, Providence. Zbl0838.76034MR1363031
  9. [CW] P. Constantin - J. Wu, Inviscid limit for vortex patches, Nonlinearity8 (1995), 735-742. Zbl0832.76011MR1355040
  10. [EE] Weinan E. - B. Engquist, Blow-up of Solutions of the Unsteady Prandtl's Equation, preprint, 1996. 
  11. [EM] D.G. Ebin - J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Arch. Rational Mech. Anal.46 (1972), 241-279. MR426034
  12. [E] W. Eckhaus, "Asymptotic Analysis of Singular Perturbations ", North-Holland, 1979. Zbl0421.34057MR553107
  13. [F] P. Fife, Considerations regarding the mathematical basis for Prandtl's boundary layer theory, Arch. Rational Mech. Anal.38 (1967), 184-216. Zbl0172.53801MR227633
  14. [Ge] P. Germain, "Méthodes Asymptotiques en Mécanique des Fluides ", in [BP]. Zbl0387.76001
  15. [Gr] H.P. Greenspan, "The Theory of Rotating Fluids", Cambridge Univ. Press, Cambridge, 1968. Zbl0182.28103MR639897
  16. [K1] K. Kato, "Remarks on the Zero Viscosity Limit for Nonstationary Navier-Stokes Flows with Boundary", in Seminar on PDE, edited by S. S. Chern, Springer, N.Y., 1984. MR765230
  17. [K2] T. Kato, On the classical solutions of two dimensional nonstationary Euler equations, Arch. Rational Mech. Anal25 (1967), 188-200. Zbl0166.45302MR211057
  18. [La] P. Lagerström, "Matched Asymptotics Expansion, Ideas and Techniques ", Springer-Verlag, New-York, 1988. Zbl0666.34064MR958913
  19. [LL] L. Landau - E. Lifschitz, "Fluid Mechanics", Addison-Wesley, New-York, 1953. 
  20. [Lc] L. Lichtenstein, "Grundlagen der Hydromechanik", Springer-Verlag, 1923. Zbl0157.56701MR228225JFM55.1124.01
  21. [Lo1] J.L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires ", Dunod, Paris, 1969. Zbl0189.40603MR259693
  22. [Lo2] J.L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Math. 323Springer-Verlag, New-York, 1973. Zbl0268.49001MR600331
  23. [M] A. Majda, "Compressible fluid flow and systems of conservation laws in several space variables", Springer-Verlag, New-York, 1984. Zbl0537.76001MR748308
  24. [O] O. Oleinik, The Prandtl system of equations in boundary layer theory, Dokl. Akad. Nauk S.S.S.R.150, 4(3) (1963), 583-586. Zbl0134.45004
  25. [Pr] L. Prandtl, Veber Flüssigkeiten bei sehr kleiner Reibung, Verh. III Intern. Math. Kongr. Heidelberg (1905), 484-491, Teuber, Leibzig. JFM36.0800.02
  26. [SC] M. Sammartino - R.E. Caflish, Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space, I and II Preprint, 1996. MR1461106
  27. [T1] R. Temam, On the Euler equations of incompressible perfect fluids, J. Funct. Anal.20 (1975), 32-43; Remarks on the Euler equations, in Proc. of "Symposia in Pure Mathematics", F. Browder ed., AMS, Providence, vol. 45 (1986), 429-430. Zbl0309.35061
  28. [T2] R. Temam, Local existence of C∞ solutions of the Euler equations of incompressible perfect fluids, in Proc. Conf. on "Turbulence and Navier-Stokes", Lecture Notes in Mathematics 565Springer-Verlag, 1976. Zbl0355.76017
  29. [T3] R. Temam, Behaviour at time t = 0 of the solutions of semi-linear evolution equations, J. Diff. Equ.17 (1982), 73-92. Zbl0446.35057MR645638
  30. [T4] R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF Regional Conference Series in "Applied Mathematics", SIAM, Philadelphia. Second edition, 1995. Zbl0833.35110MR1318914
  31. [TW1] R. Temam - X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a channel, Differential and Integral Equations, 8 (1995), 1591-1618. Zbl0832.35112MR1347972
  32. [TW2] R. Temam - X. Wang, Asymptotic analysis of the linearized Navier-Stokes equations in a general 2D domain, Asymptotic Analysis9 (1996), 1-30. Zbl0889.35076MR1383673
  33. [TW3] R. Temam - X. Wang, Asymptotic analysis of Oseen type equations in a channel at small viscosity, Indiana Univ. Math. J.45 (1996), 863-916. Zbl0881.35097MR1422110
  34. [TW4] R. Temam - X. Wang, Boundary layers for Oseen's type equation in space dimension three, dedicated to M. Vishik, Russian Journal of Mathematical Physics, to appear. Zbl0912.35125
  35. [TW5] R. Temam - X. Wang, The convergence of the solutions of the Navier-Stokes equations to that of the Euler equations, Applied. Math. Letters, to appear. Zbl0888.35077MR1471313
  36. [Vd] M. Van Dyke, "Perturbation Methods in Fluid Mechanics ", Academic Press, New-York. Zbl0136.45001MR416240
  37. [VL] M.I. Vishik - L.A. Lyusternik, Regular degeneration and boundary layer for linear differential equations with small parameter, Uspekki Mat. Nauk12 (1957), 3-122. Zbl0087.29602MR96041
  38. [Wo] W. Wolibner, Un théorème sur l'existence du mouvement plan d'un fluide parfait homogène incompressible, pendant un temps infiniment long, Math. Z.39 (1933), 698-726. Zbl0008.06901MR1545430JFM59.1447.02
  39. [YX] T. Yanagisawa - Z. Xin, Singular perturbation of Euler equations with characteristic boundary condition, in preparation. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.