A class of nonlinear conservative elliptic equations in cylinders

Jean René Licois; Laurent Véron

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 2, page 249-283
  • ISSN: 0391-173X

How to cite

top

Licois, Jean René, and Véron, Laurent. "A class of nonlinear conservative elliptic equations in cylinders." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 249-283. <http://eudml.org/doc/84328>.

@article{Licois1998,
author = {Licois, Jean René, Véron, Laurent},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Laplace-Beltrami operator; Emden-Fowler equation},
language = {eng},
number = {2},
pages = {249-283},
publisher = {Scuola normale superiore},
title = {A class of nonlinear conservative elliptic equations in cylinders},
url = {http://eudml.org/doc/84328},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Licois, Jean René
AU - Véron, Laurent
TI - A class of nonlinear conservative elliptic equations in cylinders
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 249
EP - 283
LA - eng
KW - Laplace-Beltrami operator; Emden-Fowler equation
UR - http://eudml.org/doc/84328
ER -

References

top
  1. [Au] TH. Aubin, Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Grundlehren Math. Wiss., Springer, Berlin, 1982. Zbl0512.53044MR681859
  2. [AMR] R. Abraham - J.E. Marsden - T. Ratiu, Manifolds, Tensor Analysis and Applications, Appl. Math. Sci. Springer, Berlin, 1988. Zbl0875.58002MR960687
  3. [BGM] M. Berger - P. Gauduchon - E. Mazet, Le spectre d'une variété riemannienne, Lect. Notes Math., 94, Springer, Berlin, 1971. Zbl0223.53034MR282313
  4. [BVB] M.F. Bidaut-Véron — M. Bouhar, On characterization of solutions of some nonlinear differential equations and applications, SIAM J. Math. Anal.25 (1994), 859-875. Zbl0807.34050MR1271314
  5. [BVV] M.F. Bidaut- Véron - L. Véron, Nonlinear elliptic equations on compact riemannian manifolds and asymptotics of Emden equations, Invent. Math.106 (1991), 489-539. Zbl0755.35036MR1134481
  6. [BV] M. Bouhar - L. Véron, Integral representation of solutions of semilinear elliptic equations and applications, Nonlinear Anal.23 (1994), 275-296. Zbl0817.35022MR1289133
  7. [CGS] L.A. Caffarelli - B. Gidas - J. Spruck, Asymptotic symmetry and local behaviour of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math.42 (1989), 271-297. Zbl0702.35085MR982351
  8. [CL] E.A. Coddington - N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, 1955. Zbl0064.33002MR69338
  9. [GS1] B. Gidas - J. Spuck, Global and local behaviour of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math.34 (1981), 525-598. Zbl0465.35003MR615628
  10. [GS2] B. Gidas - J. Spuck, A priori bound for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations6 (1981), 883-901. Zbl0462.35041MR619749
  11. [GT] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren Math. Wiss., Springer, Berlin, 1983. Zbl0562.35001MR737190
  12. [Ha] H. Hamza, personal communication. 
  13. [LP] J.M. Lee - T.H. Parker, The Yamabe problem, Bull. Amer. Math. Soc.17 (1987), 37-91. Zbl0633.53062MR888880
  14. [Li] A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, 1958. Zbl0096.16001MR124009
  15. [L1] J.R. Licois, Asymptotiques d'un système dynamique dynamique associé à une équation elliptique non linéaire, J. Analyse. Math.66 (1995), 1-36. Zbl0844.58072MR1370344
  16. [L2] J.R. Licois, Systèmes elliptiques non linéaires conservatifs dans des cylindres infinis, Thèse de Doctorat, Univ. F. Rabelais, Tours, 1994. 
  17. [LV] J.R. Licois - L. Véron, Un théorème d'annulation pour des équations elliptiques non linéaires sur des variétés riemanniennes compactes, C.R. Acad. Sci. Paris Sér. I Math.320 (1995), 1337-1342. Zbl0839.53031MR1338283
  18. [Ob] M. Obata, The conjecture on conformal transformations of Riemannian manifolds, J. Differential Geom.6 (1971), 247-258. Zbl0236.53042MR303464
  19. [OY] M. Obata - K. Yano, Sur le groupe de transformation conformes d'une variété de Riemann dont le scalaire de courbure est constant, C.R. Acad. Sci. Paris Sér. I Math.260 (1965), 2698-2700. Zbl0137.41302MR176425
  20. [Tr] N.S. Trudinger, Remarks concerning the conformal deformation of Riemannian structure on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci.22 (1968), 265-274. Zbl0159.23801MR240748
  21. [Ve] L. Véron, Equations d'évolution semi-linéaires du second ordre dans L1, Rev. Roumaine Math. Pures Appl.27 (1982), 95-123. Zbl0489.35010MR658869
  22. [WW] E.T. Whittaker - G.N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1927. MR1424469JFM53.0180.04

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.