The Cauchy problem for degenerate parabolic equations in Gevrey classes

Kunihiko Kajitani; Masahiro Mikami

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 2, page 383-406
  • ISSN: 0391-173X

How to cite

top

Kajitani, Kunihiko, and Mikami, Masahiro. "The Cauchy problem for degenerate parabolic equations in Gevrey classes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 383-406. <http://eudml.org/doc/84333>.

@article{Kajitani1998,
author = {Kajitani, Kunihiko, Mikami, Masahiro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Newton's polygon; Gevrey classes},
language = {eng},
number = {2},
pages = {383-406},
publisher = {Scuola normale superiore},
title = {The Cauchy problem for degenerate parabolic equations in Gevrey classes},
url = {http://eudml.org/doc/84333},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Kajitani, Kunihiko
AU - Mikami, Masahiro
TI - The Cauchy problem for degenerate parabolic equations in Gevrey classes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 383
EP - 406
LA - eng
KW - Newton's polygon; Gevrey classes
UR - http://eudml.org/doc/84333
ER -

References

top
  1. [1] S. Gindikin - L.R. Volevich, "The Method of Newton's Polyhedron in the Theory of Partial Differential Equations", Kluwer Academic Publisher, Dordrecht-Boston-London1992. Zbl0779.35001MR1256484
  2. [2] K. Igari, Well-Posedness of the Cauchy problem for some evolution equations, Publ. Res. Inst. Math. Sci.9 (1974), 613-629. Zbl0299.35052MR348272
  3. [3] K. Kajitani - T. Nishitani, "The Hyperbolic Cauchy Problem", Lecture Notes in Math.1505, Springer-Verlag, Berlin, 1991. Zbl0762.35002MR1166190
  4. [4] K. Kajitani - K. Yamaguti, On global real analytic solutions of the Degenerate Kirchhoff Equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 21 (1994), 279-297. Zbl0819.35099MR1288368
  5. [5] K. Kitagawa, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions C∞ I, J. Mat. Kyoto Univ.30 (1990), 671-703. Zbl0881.35053
  6. [6] K. Kitagawa, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions C∞II, J. Mat. Kyoto Univ.31 (1991), 1-32. Zbl0881.35054
  7. [7] L. Hörmander, "The Analysis of Linear Partial Differential Operators III", A Series of Comprehensive Studies in Math.274, Springer-Verlag, Berlin, 1985. Zbl0601.35001MR781536
  8. [8] M. Mikami, The Cauchy problem for degenerate parabolic equations and Newton polygon, Funkcial. Ekvac.39 (1996), 449-468. Zbl0909.35077MR1433912
  9. [9] M. Miyake, Degenerate parabolic differential equations-Necessity of the wellposedness of the Cauchy problem, J. Math. Kyoto Univ.14 (1974), 461-476. Zbl0297.35040MR355344
  10. [10] K. Shinkai, The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math.14 (1977), 55-84. Zbl0362.35040MR454354

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.