The Cauchy problem for degenerate parabolic equations in Gevrey classes
Kunihiko Kajitani; Masahiro Mikami
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 26, Issue: 2, page 383-406
- ISSN: 0391-173X
Access Full Article
topHow to cite
topKajitani, Kunihiko, and Mikami, Masahiro. "The Cauchy problem for degenerate parabolic equations in Gevrey classes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.2 (1998): 383-406. <http://eudml.org/doc/84333>.
@article{Kajitani1998,
author = {Kajitani, Kunihiko, Mikami, Masahiro},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Newton's polygon; Gevrey classes},
language = {eng},
number = {2},
pages = {383-406},
publisher = {Scuola normale superiore},
title = {The Cauchy problem for degenerate parabolic equations in Gevrey classes},
url = {http://eudml.org/doc/84333},
volume = {26},
year = {1998},
}
TY - JOUR
AU - Kajitani, Kunihiko
AU - Mikami, Masahiro
TI - The Cauchy problem for degenerate parabolic equations in Gevrey classes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 2
SP - 383
EP - 406
LA - eng
KW - Newton's polygon; Gevrey classes
UR - http://eudml.org/doc/84333
ER -
References
top- [1] S. Gindikin - L.R. Volevich, "The Method of Newton's Polyhedron in the Theory of Partial Differential Equations", Kluwer Academic Publisher, Dordrecht-Boston-London1992. Zbl0779.35001MR1256484
- [2] K. Igari, Well-Posedness of the Cauchy problem for some evolution equations, Publ. Res. Inst. Math. Sci.9 (1974), 613-629. Zbl0299.35052MR348272
- [3] K. Kajitani - T. Nishitani, "The Hyperbolic Cauchy Problem", Lecture Notes in Math.1505, Springer-Verlag, Berlin, 1991. Zbl0762.35002MR1166190
- [4] K. Kajitani - K. Yamaguti, On global real analytic solutions of the Degenerate Kirchhoff Equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 21 (1994), 279-297. Zbl0819.35099MR1288368
- [5] K. Kitagawa, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions C∞ I, J. Mat. Kyoto Univ.30 (1990), 671-703. Zbl0881.35053
- [6] K. Kitagawa, Sur des conditions nécessaries pour les équations en évolution pour gue le problème de Cauchy soit bien posé dans les classes de fonctions C∞II, J. Mat. Kyoto Univ.31 (1991), 1-32. Zbl0881.35054
- [7] L. Hörmander, "The Analysis of Linear Partial Differential Operators III", A Series of Comprehensive Studies in Math.274, Springer-Verlag, Berlin, 1985. Zbl0601.35001MR781536
- [8] M. Mikami, The Cauchy problem for degenerate parabolic equations and Newton polygon, Funkcial. Ekvac.39 (1996), 449-468. Zbl0909.35077MR1433912
- [9] M. Miyake, Degenerate parabolic differential equations-Necessity of the wellposedness of the Cauchy problem, J. Math. Kyoto Univ.14 (1974), 461-476. Zbl0297.35040MR355344
- [10] K. Shinkai, The symbol calculus for the fundamental solution of a degenerate parabolic system with applications, Osaka J. Math.14 (1977), 55-84. Zbl0362.35040MR454354
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.