Integration of Monge-Ampère equations and surfaces with negative gaussian curvature
Ha Tien Ngoan; Dexing Kong; Mikio Tsuji
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)
- Volume: 27, Issue: 2, page 309-330
- ISSN: 0391-173X
Access Full Article
topHow to cite
topHa Tien Ngoan, Kong, Dexing, and Tsuji, Mikio. "Integration of Monge-Ampère equations and surfaces with negative gaussian curvature." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1998): 309-330. <http://eudml.org/doc/84360>.
@article{HaTienNgoan1998,
author = {Ha Tien Ngoan, Kong, Dexing, Tsuji, Mikio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {integrability condition; negative Gaussian curvature; singularities of solutions; Monge-Ampère equation},
language = {eng},
number = {2},
pages = {309-330},
publisher = {Scuola normale superiore},
title = {Integration of Monge-Ampère equations and surfaces with negative gaussian curvature},
url = {http://eudml.org/doc/84360},
volume = {27},
year = {1998},
}
TY - JOUR
AU - Ha Tien Ngoan
AU - Kong, Dexing
AU - Tsuji, Mikio
TI - Integration of Monge-Ampère equations and surfaces with negative gaussian curvature
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 309
EP - 330
LA - eng
KW - integrability condition; negative Gaussian curvature; singularities of solutions; Monge-Ampère equation
UR - http://eudml.org/doc/84360
ER -
References
top- [ 1 ] M.H. Amsler, Des surfaces à courbure constante négative dans l'espace à trois dimensions et de leurs singularités, Math. Ann.130 (1955), 234-256. Zbl0068.35102MR73225
- [2] R. Courant - D. Hilbert, "Methods of Mathematical Physics", vol. 2, Interscience, New York, 1962. Zbl0099.29504
- [3] G. Darboux, "Leçons sur la théorie générale des surfaces", tome3, Gauthier-Villars, Paris, 1894. Zbl53.0659.02
- [4] N.V. Efimov, Generation of singularities on surfaces of negative curvature, Maht. USSR-Sb.64 (1964), 286-320. Zbl0126.37402MR167938
- [5] E. Goursat, "Leçons sur l'intégration des équations aux dérivées partielles du second ordre", tome 1, Hermann, Paris, 1896. Zbl48.0537.05
- [6] E. Goursat, "Cours d'analyse mathématique", tome 3, Gauthier-Villars, Paris, 1927. Zbl53.0180.05JFM53.0180.05
- [7] J. Hadamard, "Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques", Hermann, Paris, 1932. Zbl0006.20501JFM58.0519.16
- [8] D. Hilbert, Über Flächen von constanter Gausscher Krümmung, Trans. Amer. Math. Soc.2 (1901), 87-99. MR1500557JFM32.0608.01
- [9] F. Holmgen, Sur les surfaces à courbure constante négative, C. R. Acad. Sci. Paris134 (1902), 740-743. Zbl33.0643.01JFM33.0643.01
- [10] S. Izumiya, Geometric singularities for Hamilton-Jacobi equation, Adv. Stud. Pure Math.22 (1993), 89-100. Zbl0837.35090MR1274941
- [11] S. Izumiya, Characteristic vector fields for first order partial differential equations, preprint. Zbl0942.35042MR1611166
- [12] S. Izumiya - G.T. Kossioris, Semi-local classification of geometric singularities for Hamilton-Jacobi equations, J. Differential Equations118 (1995), 166-193. Zbl0837.35091MR1329407
- [13] M. Kossowski, Local existence of multivalued solutions to analytic symplectic Monge-Ampère equations, Indiana Univ. Math. J.40 (1991), 123-148. Zbl0718.53043MR1101224
- [14] H. Levy, Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zveiler Ordnung mit zwei unabhänggigen Veränderlichen, Math. Ann.97 (1927), 179-191. JFM53.0473.15
- [15] H. Levy, A priori limitations for solutions of Monge-Ampère equations I, II, Trans. Amer. Math. Soc.37 (1934), 417-434; 41 (1937), 365-374. MR1501906JFM63.0442.01
- [16] V.V. Lychagin, Contact geometry and non-linear second order differential equations, Russian Math. Surveys34 (1979), 149-180. Zbl0427.58002MR525652
- [17] T.K. Milnor, Efimov's theorem about complete immersed surfaces of negative curvature, Adv. Math.8 (1972), 454-543. Zbl0236.53055MR301679
- [18] S. Nakane, Formation of singularities for Hamilton-Jacobi equations in several space variables, J. Math. Soc. Japan43 (1991), 89-100. Zbl0743.35043MR1082424
- [19] S. Nakane, Formation of shocks for a single conservation law, SIAM J. Math. Anal.19 (1988), 1391-1408. Zbl0681.35057MR965259
- [20] A Pliś, Characteristics of nonlinear partial differential equations, Bull. Polish Acad. Sci. Math, Cl.III2 (1954), 419-422. Zbl0056.31902MR67296
- [21] Tran Dinh Son, On surfaces with negative analytic Gaussian curvature, Diploma at Hanoi Institute of Mathematics (1996).
- [22] M. Tsuji, Formation of singularities for Hamilton-Jacobi equations II, J. Math. Kyoto Univ.26 (1986), 299-308. Zbl0655.35009MR849221
- [23] M. Tsuji, Prolongation of classical solutions and singularities of generelized solutions, Ann. Inst. H. Poincaré - Anal. Non Linéaire7 (1990), 505-525. Zbl0722.35025MR1079570
- [24] M. Tsuji, Formation of singularities for Monge-Ampère equations, Bull. Sci. Math.119 (1995), 433-457. Zbl0845.35005MR1354246
- [25] M. Tsuji, Monge-Ampère equations and surfaces with negative Gaussian curvature, Banach Center Publ.39 (1997), 161-170. Zbl0890.35093MR1458658
- [26] M. Tsuji, Geometric approach to blow-up phenomena in nonlinear problems, In "Real Analytic and Algebraic Singularities" edited by T. Fukuda, et al. (Pitman Research Notes in Math. 381. Longman, 1998), 164-180. Zbl0894.35072MR1607635
- [27] H. Whitney, On singularities of mappings of Euclidean spaces I, Ann. Math.62 (1955), 374-410. Zbl0068.37101MR73980
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.