Integration of Monge-Ampère equations and surfaces with negative gaussian curvature

Ha Tien Ngoan; Dexing Kong; Mikio Tsuji

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 27, Issue: 2, page 309-330
  • ISSN: 0391-173X

How to cite

top

Ha Tien Ngoan, Kong, Dexing, and Tsuji, Mikio. "Integration of Monge-Ampère equations and surfaces with negative gaussian curvature." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 27.2 (1998): 309-330. <http://eudml.org/doc/84360>.

@article{HaTienNgoan1998,
author = {Ha Tien Ngoan, Kong, Dexing, Tsuji, Mikio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {integrability condition; negative Gaussian curvature; singularities of solutions; Monge-Ampère equation},
language = {eng},
number = {2},
pages = {309-330},
publisher = {Scuola normale superiore},
title = {Integration of Monge-Ampère equations and surfaces with negative gaussian curvature},
url = {http://eudml.org/doc/84360},
volume = {27},
year = {1998},
}

TY - JOUR
AU - Ha Tien Ngoan
AU - Kong, Dexing
AU - Tsuji, Mikio
TI - Integration of Monge-Ampère equations and surfaces with negative gaussian curvature
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 27
IS - 2
SP - 309
EP - 330
LA - eng
KW - integrability condition; negative Gaussian curvature; singularities of solutions; Monge-Ampère equation
UR - http://eudml.org/doc/84360
ER -

References

top
  1. [ 1 ] M.H. Amsler, Des surfaces à courbure constante négative dans l'espace à trois dimensions et de leurs singularités, Math. Ann.130 (1955), 234-256. Zbl0068.35102MR73225
  2. [2] R. Courant - D. Hilbert, "Methods of Mathematical Physics", vol. 2, Interscience, New York, 1962. Zbl0099.29504
  3. [3] G. Darboux, "Leçons sur la théorie générale des surfaces", tome3, Gauthier-Villars, Paris, 1894. Zbl53.0659.02
  4. [4] N.V. Efimov, Generation of singularities on surfaces of negative curvature, Maht. USSR-Sb.64 (1964), 286-320. Zbl0126.37402MR167938
  5. [5] E. Goursat, "Leçons sur l'intégration des équations aux dérivées partielles du second ordre", tome 1, Hermann, Paris, 1896. Zbl48.0537.05
  6. [6] E. Goursat, "Cours d'analyse mathématique", tome 3, Gauthier-Villars, Paris, 1927. Zbl53.0180.05JFM53.0180.05
  7. [7] J. Hadamard, "Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques", Hermann, Paris, 1932. Zbl0006.20501JFM58.0519.16
  8. [8] D. Hilbert, Über Flächen von constanter Gausscher Krümmung, Trans. Amer. Math. Soc.2 (1901), 87-99. MR1500557JFM32.0608.01
  9. [9] F. Holmgen, Sur les surfaces à courbure constante négative, C. R. Acad. Sci. Paris134 (1902), 740-743. Zbl33.0643.01JFM33.0643.01
  10. [10] S. Izumiya, Geometric singularities for Hamilton-Jacobi equation, Adv. Stud. Pure Math.22 (1993), 89-100. Zbl0837.35090MR1274941
  11. [11] S. Izumiya, Characteristic vector fields for first order partial differential equations, preprint. Zbl0942.35042MR1611166
  12. [12] S. Izumiya - G.T. Kossioris, Semi-local classification of geometric singularities for Hamilton-Jacobi equations, J. Differential Equations118 (1995), 166-193. Zbl0837.35091MR1329407
  13. [13] M. Kossowski, Local existence of multivalued solutions to analytic symplectic Monge-Ampère equations, Indiana Univ. Math. J.40 (1991), 123-148. Zbl0718.53043MR1101224
  14. [14] H. Levy, Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zveiler Ordnung mit zwei unabhänggigen Veränderlichen, Math. Ann.97 (1927), 179-191. JFM53.0473.15
  15. [15] H. Levy, A priori limitations for solutions of Monge-Ampère equations I, II, Trans. Amer. Math. Soc.37 (1934), 417-434; 41 (1937), 365-374. MR1501906JFM63.0442.01
  16. [16] V.V. Lychagin, Contact geometry and non-linear second order differential equations, Russian Math. Surveys34 (1979), 149-180. Zbl0427.58002MR525652
  17. [17] T.K. Milnor, Efimov's theorem about complete immersed surfaces of negative curvature, Adv. Math.8 (1972), 454-543. Zbl0236.53055MR301679
  18. [18] S. Nakane, Formation of singularities for Hamilton-Jacobi equations in several space variables, J. Math. Soc. Japan43 (1991), 89-100. Zbl0743.35043MR1082424
  19. [19] S. Nakane, Formation of shocks for a single conservation law, SIAM J. Math. Anal.19 (1988), 1391-1408. Zbl0681.35057MR965259
  20. [20] A Pliś, Characteristics of nonlinear partial differential equations, Bull. Polish Acad. Sci. Math, Cl.III2 (1954), 419-422. Zbl0056.31902MR67296
  21. [21] Tran Dinh Son, On surfaces with negative analytic Gaussian curvature, Diploma at Hanoi Institute of Mathematics (1996). 
  22. [22] M. Tsuji, Formation of singularities for Hamilton-Jacobi equations II, J. Math. Kyoto Univ.26 (1986), 299-308. Zbl0655.35009MR849221
  23. [23] M. Tsuji, Prolongation of classical solutions and singularities of generelized solutions, Ann. Inst. H. Poincaré - Anal. Non Linéaire7 (1990), 505-525. Zbl0722.35025MR1079570
  24. [24] M. Tsuji, Formation of singularities for Monge-Ampère equations, Bull. Sci. Math.119 (1995), 433-457. Zbl0845.35005MR1354246
  25. [25] M. Tsuji, Monge-Ampère equations and surfaces with negative Gaussian curvature, Banach Center Publ.39 (1997), 161-170. Zbl0890.35093MR1458658
  26. [26] M. Tsuji, Geometric approach to blow-up phenomena in nonlinear problems, In "Real Analytic and Algebraic Singularities" edited by T. Fukuda, et al. (Pitman Research Notes in Math. 381. Longman, 1998), 164-180. Zbl0894.35072MR1607635
  27. [27] H. Whitney, On singularities of mappings of Euclidean spaces I, Ann. Math.62 (1955), 374-410. Zbl0068.37101MR73980

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.