Analyticité semi-globale pour le ¯ -Neumann dans des domaines pseudoconvexes

Benoît Ben Moussa

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 1, page 51-100
  • ISSN: 0391-173X

How to cite

top

Ben Moussa, Benoît. "Analyticité semi-globale pour le $\bar{\partial }$-Neumann dans des domaines pseudoconvexes." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.1 (2000): 51-100. <http://eudml.org/doc/84405>.

@article{BenMoussa2000,
author = {Ben Moussa, Benoît},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = { Neumann problem; pseudoconvex domains},
language = {fre},
number = {1},
pages = {51-100},
publisher = {Scuola normale superiore},
title = {Analyticité semi-globale pour le $\bar\{\partial \}$-Neumann dans des domaines pseudoconvexes},
url = {http://eudml.org/doc/84405},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Ben Moussa, Benoît
TI - Analyticité semi-globale pour le $\bar{\partial }$-Neumann dans des domaines pseudoconvexes
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 1
SP - 51
EP - 100
LA - fre
KW - Neumann problem; pseudoconvex domains
UR - http://eudml.org/doc/84405
ER -

References

top
  1. [Ben] B. Ben Moussa, Analyticité semi-globale pour le ∂-Neumann pour une classe de domaines pseudoconvexes vérifiant une inégalité de type maximal, C.R. Acad. Sci. Paris328 Série 1 (1999), 979-982. Zbl0972.32026
  2. [BG] T. Bloom - I. Graham, A geometric characterization of points of type m on real submanifolds of Cn, J. Differential Geom.12 (1977), 171- 182. Zbl0363.32013MR492369
  3. [Cat] D. Catlin, Global regularity of the ∂-Neumann problem, Proc. Sympos. in Pure Math.41 (1984), 39-49. Zbl0578.32031
  4. [Cat1] D. Catlin, Subelliptic estimates for the ∂-Neumann problem on pseudoconvex domains, Ann. Math.126 (1987), 131-191. Zbl0627.32013
  5. [Che] S.C. Chen, Global real analyticity of solutions to the ∂-Neumann problem on Reinhardt domains, Indiana Univ. Math. J.37 (1988), 421-430. Zbl0637.32016
  6. [Che1] S.C. Chen, Global real analyticity of solutions to the ∂-Neumann problem, Math. Z.198 (1988), 239-259. Zbl0628.32022
  7. [Che2] S.C. Chen, Global analytic hypoellipticity of the ∂-Neumann problem on circular domains, Invent. Math.92 (1988) 173-185. Zbl0621.35067
  8. [Chr1] M. Christ, Analytic hypoellipticity break down for weakly pseudoconvex Reinhardt domains, Internat. Math. Res. Notices1 (1991), 31-40. Zbl0747.35005MR1115151
  9. [Chr2] M. Christ, Global analytic regularity in the presence of symmetry, Math. Res. Lett.1 (1994), 499-563. Zbl0841.35027
  10. [Chr3] M. Christ, The Szegö projection need not preserve global analy ticity, Ann. Math. (2) 143 (1996), 301-330. Zbl0851.32024MR1381988
  11. [D'An1] J. D'Angelo, Subelliptic estimates and failure of semi-continuity of orders of contact, Ann. Math.47 (1980), 955-957. Zbl0455.32010MR596122
  12. [D'An2] J. D'Anoelo, Real hypersurfaces, orders of contact and applications, Ann. Math.115 (1982), 615-637. Zbl0488.32008MR657241
  13. [Der] M. Derridj, Régularité pour ∂ dans quelques domaines faiblement pseudoconvexes, J. Differential Geom.13 (1978), 559-576. Zbl0435.35057
  14. [Der1] M. Derridj, Domaines à estimation maximale, Math. Z.208 (1991), 71-88. Zbl0749.32007MR1125734
  15. [Der2] M. Derridj, Estimations par composantes pour le problème ∂-Neumann pour quelques classes de domaines pseudoconvexes de Cn, Math. Z.208 (1991), 89-99. Zbl0749.32008
  16. [DT] M. Derridj - D.S. Tartakoff, On the global real analyticity for the ∂-Neumann problem, Comm. in Partial Differential Equations5 (1976), 401-435. Zbl0441.35049
  17. [DT1] M. Derridj - D.S. Tartakoff, Local analyticity for ∂-Neumann problem and □b, some model domains without maximal estimates, Duke. Math. J.64 (1991), 377-402. Zbl0790.35078
  18. [DT2] M. Derridj - D.S. Tartakoff, Analyticité au voisinage de la dégénérescence de la forme de Lévi, de la solution canonique de ∂b sur des surfaces pseudoconvexes de C 2, Preprint 1997. 
  19. [DF] K. Diederich - J.E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math.107 (1978), 371-384. Zbl0378.32014MR477153
  20. [FK] G.B. Folland - J.J. Kohn, "The Neumann Problem for the Cauchy-Riemann Complex", Annals of Mathematics studies, n° 75. Princeton University press, 1972. Zbl0247.35093MR461588
  21. [Gri] A. Grigis, Propagation des singularités au bord d'ouverts de Cn, Comm. Partial Differential Equations6 (1981), 689-717. Zbl0472.58021MR617786
  22. [GR] A. Grigis - L.P. Rothschild, L2 Estimates for the boundary Laplacian operator on hypersurfaces, Am. J. Math.110 (1988), 577-593. Zbl0675.35064MR955289
  23. [HF] B. Helffer - J. Nourrigat, "Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs", Progress in Maths58Birkhaüser1985. Zbl0568.35003MR897103
  24. [Hör] L. Hörmander, "An Introduction to Complex Analysis in Several Variables", D. Van Norstrand Company, Inc. 1966. Zbl0138.06203MR203075
  25. [Hör1] L. Hörmander, Hypoelliptic second order differential equations, Acta Math.119 (1967), 147-171. Zbl0156.10701MR222474
  26. [Hör2] L. Hörmander, "The Analysis of Linear Partial Differential Operators, T1.2.3&4Springer-Verlag s.e 1989. Zbl0687.35002
  27. [Koh] J.J. Kohn, Boundary behavior of ∂ on weakly pseudoconvex manifolds of dimension two, J. Differential Geom. 6 (1972), 523-542. Zbl0256.35060
  28. [IK] A.V. Isaev - S.G. Krantz, Finitely smooth Reinhardt domains with non-compact automorphism group, Preprint 1997. Zbl0879.32002MR1458181
  29. [Koh1 ] J.J. Kohn, Subellipticity of the ∂-Neumann problem on pseudoconvex domains, Acta Math.142 (1979), 79-122. Zbl0395.35069
  30. [KN] J.J. Kohn - L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math.18 (1965), 443-492. Zbl0125.33302MR181815
  31. [Kom] G. Komatsu, Global analytic hypoellipticity of the ∂-Neumann problem, Tohöku Math. J.28 (1976), 145-156. Zbl0319.35056
  32. [MN] C.B. Morrey - L. Nirenberg, On the analyticity of solutions oflinear elliptic systems of partial differential equations, Comm. Pure Appl. Math.10 (1957), 271-290. Zbl0082.09402MR89334
  33. [Nag] T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan18 (1966), 398-404. Zbl0147.23502MR199865
  34. [Rei] I. Reizner, Analyticité globale de la solution du problème du ∂-Neumann pour une classe de domaines de Cn, C.R. Acad. Sci. Paris324 Série 1, (1997), 1231-1236. Zbl0883.32017
  35. [Sha] M.C. Shaw, L 2 existence theorems for the ∂b -Neumann problem on strongly pseudoconvex CR manifolds, J. Geom. Anal.1 (1991), 139-163. Zbl0729.32008
  36. [Swe] W.J. Sweeney, The D-Neumann problem, Acta Math.120 (1968), 223-277. Zbl0159.38402MR226662
  37. [Tar] D.S. Tartakoff, On the global real analyticity of solutions to □b on compact manifolds, Comm. Partial Differential Equations1 (1976), 283-311. Zbl0334.35013
  38. [Tar1] D.S. Tartakoff, Local analytic hypoellipticity for □ b on non-degenerate Cauchy-Riemann Manifolds, Proc. Nat. Acad. Sci U.S.A, 75 n° 7 (1978), 3027-3028. Zbl0384.35020
  39. [Tar2] D.S. Tartakoff, Local real analyticity of solutions to □ b and ∂-Neumann, Acta Math.145 (1980), 117-204. - Zbl0456.35019
  40. [Trè] F. Trèves, Operators with double characteristics and application to the ∂-Neumann problem, Comm Partial Differential Equations3 (1978), 475-462. Zbl0384.35055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.