Decay of Fourier transforms and summability of eigenfunction expansions

Luca Brandolini; Leonardo Colzani

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 3, page 611-638
  • ISSN: 0391-173X

How to cite

top

Brandolini, Luca, and Colzani, Leonardo. "Decay of Fourier transforms and summability of eigenfunction expansions." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.3 (2000): 611-638. <http://eudml.org/doc/84421>.

@article{Brandolini2000,
author = {Brandolini, Luca, Colzani, Leonardo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {611-638},
publisher = {Scuola normale superiore},
title = {Decay of Fourier transforms and summability of eigenfunction expansions},
url = {http://eudml.org/doc/84421},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Brandolini, Luca
AU - Colzani, Leonardo
TI - Decay of Fourier transforms and summability of eigenfunction expansions
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 3
SP - 611
EP - 638
LA - eng
UR - http://eudml.org/doc/84421
ER -

References

top
  1. [1] S.A. Alimov - V.A. Il'in - E.M. Nikishin, Convergence problems of multiple trigonometric series and spectral decompositions, I, II, Russian Math. Surveys31 (1976), 29-86, 32 (1977), 115-139. Zbl0376.42002
  2. [2] P. Bérard, On the wave equation on a manifold without conjugate points, Math. Z.155 (1977), 249-276. Zbl0341.35052MR455055
  3. [3] P. Bérard, Riesz means on Riemannian manifolds, Amer. Math. Soc. Proc. Symp. Pure Math. XXXVI (1980), 1-12. Zbl0443.58023MR573426
  4. [4] S. Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc.40 (1936), 175-207. Zbl0015.15702MR1501870JFM62.0293.03
  5. [5] L. Brandolini - L. Colzani, Localization and convergence of eigenfunction expansions, J. Fourier Anal. Appl.5 (1999), 431-447. Zbl0938.42015MR1755098
  6. [6] L. Brandolini - L. Colzani - G. Travaglini, Average decay of Fourier transforms and integer points in polyhedra, Ark. Mat.35 (1997), 253-275. Zbl0937.11043MR1478780
  7. [7] L. Colzani - M. Vignati, The Gibbs phenomenon for multiple Fourier integrals, J. Approx. Th.80 (1995), 119-131. Zbl0815.42008MR1308597
  8. [8] L. De Michele - D. Roux, Approximate units and Gibbs phenomenon, Boll. Un. Mat. Ital. A (7) (1997), 739-746. Zbl0898.42002MR1489045
  9. [9] L. De Michele - D. Roux, The Gibbs phenomenon for L1 loc kernels, J. Approx. Th.100 (1999), 144-156. Zbl0953.42006MR1710557
  10. [10] L. De Michele - D. Roux, The Gibbs phenomenon for multiple Fourier integrals and series: restriction theorems, Atti Sem. Mat. Fis. Univ. Modena46 (1998), 351-360. Zbl0916.42008MR1645726
  11. [11] G.H. Hardy, On the expression of a number as a sum of two squares, Quart. J. Math.46 (1915), 263-283. Zbl45.1253.01JFM45.1253.01
  12. [12] E. Hlawka, Uber Integrale auf convexen Korpen, I & II, Monats. Math. 54 (1950), 1-36, 81-99. Zbl0036.30902MR37003
  13. [13] C. Herz, Fourier transform related to convex sets, Ann. of Math.75 (1962), 81-92. Zbl0111.34803MR142978
  14. [14] L. Hörmander, On the Riesz means of spectral functions and eigenfunction expansions for elliptic differential operators, In: "Some recent advances in the basic sciences", Yeshiva University1966, pp. 155-202. MR257589
  15. [15] L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193-218. Zbl0164.13201MR609014
  16. [16] L. Hörmander, "The analysis of linear partial differential operators", I, II, III, IV, Springer Verlag, 1985-1985. Zbl0830.60006
  17. [17] J.P. Kahane, Le phénomène de Pinsky et la géométrie des surfaces, C. R. Acad. Sci. Paris321 (1995), 1027-1029. Zbl0841.42004MR1360566
  18. [18] D.G. Kendall, On the number of lattice points inside a random oval, Quart. J. Math. Oxford19 (1948), 1-26. Zbl0031.11201MR24929
  19. [19] C. Meaney, On almost-everywhere convergent eigenfunction expansions of the Laplace-Beltrami operator, Math. Proc. Cambridge Philos. Soc. 92 (1982), 129-131. Zbl0495.58030MR662968
  20. [20] M.A. Pinsky, Pointwise Fourier inversion and related eigenfunction expansions, Comm. Pure Appl. Math.47 (1994), 653-681. Zbl0802.42010MR1278348
  21. [21] M.A. Pinsky, Fourier inversion in the piecewise smooth category, In: "Fourier Analysis, analytic and geometric aspects", W. O. Bray - P. S. Milojevic' - C. V. Stanojevic' (eds.), Marcel Dekker (1994). Zbl0815.42007MR1277831
  22. [22] M.A. Pinsky - M. Taylor, Pointwise Fourier inversion: a wave equation approach, J. Fourier Anal. Appl.3 (1997), 647-703. Zbl0901.42008MR1481629
  23. [23] A.N. Podkorytov, The asymptotic of Fourier transform of a convex curve, Vestnik Leningr. Univ. Mat.24 (1991), 57-65. Zbl0741.42012MR1166380
  24. [24] C.D. Sogge, Concerning the Lp norm of spectral clusters for second order elliptic differential operators on compact manifolds, J. Funct. Anal.77 (1988), 123-134. Zbl0641.46011MR930395
  25. [25] C.D. Sogge, On the convergence of Riesz means on compact manifolds, Ann. of Math.126 (1987), 439-447. Zbl0653.35068MR908154
  26. [26] E.M. Stein - G. Weiss, "Introduction to Fourier analysis on Euclidean spaces", Princeton University Press, 1971. Zbl0232.42007MR304972
  27. [27] M.E. Taylor, Pointwise Fourier inversion on tori and other compact manifolds, J. Fourier Anal. Appl.5 (1999), 449-463. Zbl0938.42007MR1755099
  28. [28] M.E. Taylor, Pointwise Fourier inversion - an addendum, Proc. Amer. Math. Soc., to appear. Zbl0967.42006MR1825908
  29. [29] M.E. Taylor, The Dirichlet-Jordan test and multidimensional extensions, Proc. Amer. Math. Soc., to appear. Zbl0969.42006MR1709767
  30. [30] M.E. Taylor, Eigenfunction expansions and the Pinsky phenomenon on compact manifolds, preprint. Zbl1065.58023MR1845101
  31. [31] A. Torlaschi, Sviluppi in armoniche sferiche di funzioni regolari a tratti, Tesi di Laurea, Università degli Studi di Milano (1998). 
  32. [32] A.N. Varchenko, Number of lattice points in families of homethetic domains in Rn, Funktional An. 17 (1983), 1-6. Zbl0522.10031MR705041
  33. [33] G.N. Watson, "A treatise on the theory of Bessel functions", Cambridge University Press, 1944. Zbl0063.08184MR10746
  34. [34] H. Weyl, Die Gibbsche Erscheinung in der Theorie der Kugelfunktionen, Rendiconti Circ. Mat. Palermo29 (1910), 308-323. Zbl41.0528.01JFM41.0528.01
  35. [35] H. Weyl, Über die Gibbsche Erscheinung und verwandte Konvergenzphänomene, Rendiconti Circ. Mat. Palermo30 (1910), 377-407. JFM41.0528.02

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.